This paper is concerned with a class of triple-point integral boundary value problems for impulsive fractional differential equations involving the Riemann-Liouville fractional derivative of order α (2 < α ≤ 3). Some sufficient criteria for the existence of solutions are obtained by applying the contraction mapping principle and the fixed point theorem. As an application, one example is given to demonstrate the validity of our main results.
We investigate the linear stability analysis of a pathway-based diffusion model (PBDM), which characterizes the dynamics of the engineered Escherichia coli populations [X. Xue and C. Xue and M. Tang, P LoS Computational Biology, 14 (2018), pp. e1006178]. This stability analysis considers small perturbations of the density and chemical concentration around two non-trivial steady states, and the linearized equations are transformed into a generalized eigenvalue problem. By formal analysis, when the internal variable responds to the outside signal fast enough, the PBDM converges to an anisotropic diffusion model, for which the probability density distribution in the internal variable becomes a delta function. We introduce an asymptotic preserving (AP) scheme for the PBDM that converges to a stable limit scheme consistent with the anisotropic diffusion model. Further numerical simulations demonstrate the theoretical results of linear stability analysis, i.e., the pattern formation, and the convergence of the AP scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.