Aging represents a state of paradox where chronic inflammation is associated with declining immune responses. Dendritic cells (DCs) are the major APCs responsible for initiating an immune response. However, DC functions in aging have not been studied in detail. In this study, we have compared the innate immune functions of monocyte-derived myeloid DCs from elderly subjects with DCs from young individuals. We show that although phenotypically comparable, DCs from the aging are functionally different from DCs from the young. In contrast to DCs from the young, DCs from elderly individuals display 1) significantly reduced capacity to phagocytose Ags via macropinocytosis and endocytosis as determined by flow cytometry; 2) impaired capacity to migrate in vitro in response to the chemokines MIP-3β and stromal cell-derived factor-1; and 3) significantly increased LPS and ssRNA-induced secretion of TNF-α and IL-6, as determined by ELISA. Investigations of intracellular signaling revealed reduced phosphorylation of AKT in DCs from the aging, indirectly suggesting decreased activation of the PI3K pathway. Because the PI3K-signaling pathway plays a positive regulatory role in phagocytosis and migration, and also functions as a negative regulator of TLR signaling by inducing activation of p38 MAPK, this may explain the aberrant innate immune functioning of DCs from elderly subjects. Results from real-time PCR and protein expression by flow cytometry demonstrated an increased expression of phosphatase and tensin homolog, a negative regulator of the PI3K-signaling pathway, in DCs from the aging. Increased phosphatase and tensin homolog may thus be responsible for the defect in AKT phosphorylation and, therefore, the altered innate immune response of DCs from elderly humans.
Multidrug resistance and various adverse side effects have long been major problems in cancer chemotherapy. Recently, chemotherapy has gradually transitioned from mono-substance therapy to multidrug therapy. As a result, the drug cocktail strategy has gained more recognition and wider use. It is believed that properly-formulated drug combinations have greater therapeutic efficacy than single drugs. Tea is a popular beverage consumed by cancer patients and the general public for its perceived health benefits. The major bioactive molecules in green tea are catechins, a class of flavanols. The combination of green tea extract or green tea catechins and anticancer compounds has been paid more attention in cancer treatment. Previous studies demonstrated that the combination of chemotherapeutic drugs and green tea extract or tea polyphenols could synergistically enhance treatment efficacy and reduce the adverse side effects of anticancer drugs in cancer patients. In this review, we summarize the experimental evidence regarding the effects of green tea-derived polyphenols in conjunction with chemotherapeutic drugs on anti-tumor activity, toxicology, and pharmacokinetics. We believe that the combination of multidrug cancer treatment with green tea catechins may improve treatment efficacy and diminish negative side effects.
Increased susceptibility to respiratory infections such as influenza is the hallmark of advancing age. The mechanisms underlying the impaired immune response to influenza are not well understood. In the present study, we have investigated the effect of advancing age on dendritic cell (DC) function because they are critical in generating robust antiviral responses. Our results indicate that monocyte derived DCs from the aged are impaired in their capacity to secrete interferon (IFN)-I in response to influenza virus. Additionally, we observed a severe reduction in the production of IFN-III, which plays an important role in defense against viral infections at respiratory mucosal surfaces. This reduction in IFN-I and IFN-III were a result of age-associated modifications in the chromatin structure. Investigations using chromatin immunoprecipitation with H3K4me3 and H3K9me3 antibodies revealed that there is increased association of IFN-I and IFN-III promoters with the repressor histone, H3K9me3 in non-stimulated aged DCs compared to young DCs. This was accompanied by decreased association of these promoters with activator histone, H3K4me3 in aged DCs after activation with influenza. In contrast to interferons, the association of TNF-alpha promoter with both these histones was comparable between aged and young subjects. Investigations at 48 h suggested that these changes are not stable and change with time. In summary, our study demonstrates that myeloid DCs from aged subjects are impaired in their capacity to produce IFNs in response to influenza virus and that age-associated altered histone expression patterns are responsible for the decrease in IFN production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.