Dendritic cells (DCs) are pivotal in determining the class of an adaptive immune response. However, the molecular mechanisms within DCs that determine this decision-making process are unknown. Here, we demonstrate that distinct Toll-like receptor (TLR) ligands instruct human DCs to induce distinct Th cell responses by differentially modulating mitogen-activated protein kinase signaling. Thus, Escherichia coli LPS and flagellin, which trigger TLR4 and TLR5, respectively, instruct DCs to stimulate Th1 responses via IL-12p70 production, which depends on the phosphorylation of p38 and c-Jun N-terminal kinase 1/2. In contrast, the TLR2 agonist, Pam3cys, and the Th2 stimulus, schistosome egg Ags: 1) barely induce IL-12p70; 2) stimulate sustained duration and magnitude of extracellular signal-regulated kinase 1/2 phosphorylation, which results in stabilization of the transcription factor c-Fos, a suppressor of IL-12; and 3) yield a Th2 bias. Thus, distinct TLR agonists differentially modulate extracellular signal-regulated kinase signaling, c-Fos activity, and cytokine responses in DCs to stimulate different Th responses.
Aging represents a state of paradox where chronic inflammation is associated with declining immune responses. Dendritic cells (DCs) are the major APCs responsible for initiating an immune response. However, DC functions in aging have not been studied in detail. In this study, we have compared the innate immune functions of monocyte-derived myeloid DCs from elderly subjects with DCs from young individuals. We show that although phenotypically comparable, DCs from the aging are functionally different from DCs from the young. In contrast to DCs from the young, DCs from elderly individuals display 1) significantly reduced capacity to phagocytose Ags via macropinocytosis and endocytosis as determined by flow cytometry; 2) impaired capacity to migrate in vitro in response to the chemokines MIP-3β and stromal cell-derived factor-1; and 3) significantly increased LPS and ssRNA-induced secretion of TNF-α and IL-6, as determined by ELISA. Investigations of intracellular signaling revealed reduced phosphorylation of AKT in DCs from the aging, indirectly suggesting decreased activation of the PI3K pathway. Because the PI3K-signaling pathway plays a positive regulatory role in phagocytosis and migration, and also functions as a negative regulator of TLR signaling by inducing activation of p38 MAPK, this may explain the aberrant innate immune functioning of DCs from elderly subjects. Results from real-time PCR and protein expression by flow cytometry demonstrated an increased expression of phosphatase and tensin homolog, a negative regulator of the PI3K-signaling pathway, in DCs from the aging. Increased phosphatase and tensin homolog may thus be responsible for the defect in AKT phosphorylation and, therefore, the altered innate immune response of DCs from elderly humans.
Anthrax poses a clear and present danger as an agent of biological terrorism. Infection with Bacillus anthracis, the causative agent of anthrax, if untreated can result in rampant bacteraemia, multisystem dysfunction and death. Anthrax lethal toxin (LT) is a critical virulence factor of B. anthracis, which occurs as a complex of protective antigen and lethal factor. Here we demonstrate that LT severely impairs the function of dendritic cells--which are pivotal to the establishment of immunity against pathogens--and host immune responses by disrupting the mitogen-activated protein (MAP) kinase intracellular signalling network. Dendritic cells exposed to LT and then stimulated with lipopolysaccharide do not upregulate co-stimulatory molecules, secrete greatly diminished amounts of proinflammatory cytokines, and do not effectively stimulate antigen-specific T cells in vivo. Furthermore, injections of LT induce a profound impairment of antigen-specific T- and B-cell immunity. These data suggest a role for LT in suppressing host immunity during B. anthracis infections, and represent an immune evasion strategy, where a microbe targets MAP kinases in dendritic cells to disarm the immune response.
Leptin, one of the adipokines, functions as a hormone and a cytokine. In this investigation, we show for the first time that leptin, in a concentration-dependent manner, activates human peripheral blood B cells to induce secretion of IL-6, IL-10, and TNF-α. Leptin increased B cells expressing CD25 and HLA-DR. Leptin induces phosphorylation of Janus activation kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), p38 mitogen-activated protein kinase (p38MAPK), and extracellular signal-regulated kinase (ERK1/2). Furthermore, leptin-induced cytokine secretion by B cells was blocked by inhibitors of JAK2, STAT3, p38MAPK, and ERK1/2. These data demonstrate that leptin activates human B cells to secrete cytokines via activation of JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathways, which may contribute to its inflammatory and immunoregulatory properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.