Yang et al. show that a disulfide isoform of HMGB1, with a role in TLR4 signaling, physically interacts with and binds MD-2. MD-2 deficiency in macrophage cell lines or in primary mouse macrophages stimulated with HMGB1 implicates MD-2 in TLR4 signaling. They also identify an HGMB1 peptide inhibitor, P5779, which when administered in vivo can protect mice from acetaminophen-induced hepatoxicity, ischemia/reperfusion injury, and sepsis.
In this paper, a unified model for describing the fractal characters of porous media is deduced. The theoretical predictions from the proposed unified model are compared with those from the previous models and from the box-counting method. The results from the proposed model are found to be in good agreement with both the previous models and box-counting method. The results also indicate that the proposed unified model is applicable to both the exactly and statistically self-similar fractal media. A statistical property of porous media is also described based on the basic fractal theory and technique. A criterion, for determining whether a porous medium can be characterized by fractal theory and technique or not, is proposed based on the fractal statistical property.
The Qilian Shan, located along the northeastern margin of the Tibetan Plateau, has experienced multiple episodes of tectonic deformation, including Neoproterozoic continental breakup, early Paleozoic subduction and continental collision, Mesozoic extension, and Cenozoic intracontinental orogenesis resulting from the India-Asia collision. In the central Qilian Shan, pre-Mesozoic ophiolite complexes, passive-continental margin sequences, and strongly deformed forearc strata were juxtaposed against arc plutonic/ volcanic rocks and ductilely deformed crystalline rocks during the early Paleozoic Qilian orogen. To better constrain this orogen and the resulting closure of the Neoproterozoic-Ordovician Qilian Ocean, we conducted an integrated investigation involving geologic mapping, U-Th-Pb zircon and monazite geochronology, whole-rock geochemistry, thermo barometry, and synthesis of existing data sets across northern Tibet. The central Qilian Shan experienced two phases of arc magmatism at 960-870 Ma and 475-445 Ma that were each followed by periods of protracted continental collision. Integrating our new data with previously published results, we propose the following tectonic model for the Proterozoic-Paleozoic history of northern Tibet. (1) Early Neoproterozoic subduction accommodated the convergence and collision between the South Tarim-Qaidam and North Tarim-North China continents. (2) Late Neoproterozoic rifting partially separated a peninsular Kunlun-Qaidam continent from the southern margin of the linked Tarim-North China craton and opened the Qilian Ocean as an embayed marginal sea; this separation broadly followed the trace of the earlier Neoproterozoic suture zone. (3) South-dipping subduction along the northern margin of the Kunlun-Qaidam continent initiated in the Cambrian, first developing as the Yushigou supra-subduction zone ophiolite and then transitioning into the continental Qilian arc. (4) South-dipping subduction, arc magmatism, and the convergence between Kunlun-Qaidam and North China continued throughout the Ordovician, with a trenchparallel intra-arc strike-slip fault system that is presently represented by high-grade metamorphic rocks that display a pervasive right-lateral shear sense. (5) Counterclockwise rotation of the peninsular Kunlun-Qaidam continent toward North China led to the closure of the Qilian Ocean, which is consistent with the right-lateral kinematics of intra-arc strike-slip faulting observed in the Qilian Shan and the westward tapering mapview geometry of Silurian flysch-basin strata. Continental collision at ca. 445-440 Ma led to widespread plutonism across the Qilian Shan and is recorded by recrystallized monazite (ca. 450-420 Ma) observed in this study. Our tectonic model implies the parallel closure of two oceans of different ages along the trace of the Qilian suture zone since ca. 1.0 Ga. In addition, the Qilian Ocean was neither the Proto-nor Paleo-Tethys (i.e., the earliest ocean separating Gondwana from Laurasia), as previously suggested, but was rather a relatively sm...
This work describes the development of a highresolution tactile-sensing finger for robot grasping. This finger, inspired by previous GelSight sensing techniques, features an integration that is slimmer, more robust, and with more homogeneous output than previous vision-based tactile sensors.To achieve a compact integration, we redesign the optical path from illumination source to camera by combining light guides and an arrangement of mirror reflections. We parameterize the optical path with geometric design variables and describe the tradeoffs between the finger thickness, the depth of field of the camera, and the size of the tactile sensing area.The sensor sustains the wear from continuous use -and abuse -in grasping tasks by combining tougher materials for the compliant soft gel, a textured fabric skin, a structurally rigid body, and a calibration process that maintains homogeneous illumination and contrast of the tactile images during use. Finally, we evaluate the sensor's durability along four metrics that track the signal quality during more than 3000 grasping experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.