We demonstrate quantum key distribution (QKD) with classical signals in a seven-core fiber using dense wavelength division multiplexing. Quantum signals are transmitted in an outer core separately and intercore crosstalk (IC-XT) is the main impairment of them. In order to alleviate IC-XT, we propose a quantum-classical interleave scheme. Then the properties of IC-XT are analyzed based on the measurement results which indicate counter-propagation is a better co-existence method than co-propagation. Finally, we perform QKD experiments in the presence of two classical channels with a channel spacing of 100 GHz between quantum channel and the nearest classical channels. The experiment results prove counter-propagation almost immune to IC-XT, which is consistent with our analysis. Also, the feasibility of the transmission over the range of metropolitan area networks is validated with our scheme.Index Terms-quantum key distribution, multicore fiber, wavelength-space division multiplexing. arXiv:1811.04198v1 [quant-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.