Infectious diseases caused by microbial pathogens are severe threats to human health and economic development. To respond to these threats, it is necessary to understand how microorganisms survive in and adapt to complex environments.
Radix Trichosanthis is a Chinese herbal medicine that has great medical value and pharmacological actions. There is already a long history of using the plant Radix Trichosanthis as treatment for hepatitis B virus in China. This research mainly focused on investigating the therapeutic effect of different extracts from Radix Trichosanthis on hepatitis B virus, on a cellular level (ex vivo). Cell survival rate of HepG2.2.15 cells was detected by MTT assay. HBsAg and HBeAg in HepG 2.2.15 cell supernatant were evaluated by enzyme linked immunosorbent assay (ELISA). Results showed that water extract from Radix Trichosanthis had a stronger inhibitive effect on expression of HBsAg and HBeAg in HepG2.2.15 cells than the alcohol extract from the same plant. Considering that the most active component of Radix Trichosanthis was in its aqueous extract and this might be related to the active component Trichosanthin. Trichosanthin was further used for related experiments to confirm this hypothesis. The results showed that Trichosanthin, in the aqueous extract from Radix Trichosanthis, is likely the main component responsible for the anti-hepatitis B viral effect.
Hot Springs have unique geochemical features. Microorganisms-mediated arsenite oxidation is one of the major biogeochemical processes occurred in some hot springs. This study aimed to understand the diversities of genes and microorganisms involved in arsenite oxidation from the outlet of an untraversed hot spring located at an altitude of 4226 m. Microcosm assay indicated that the microbial community from the hot spring was able to efficiently oxidize As(III) using glucose, lactic acid, yeast extract or sodium bicarbonate as the sole carbon source. The microbial community contained 7 phyla of microorganisms, of which Proteobacteria and Firmicutes are largely dominant; this composition is unique and differs significantly from those of other described hot springs. Twenty one novel arsenite oxidase genes were identified from the samples, which are affiliated with the arsenite oxidase families of α-Proteobacteria, β-Proteobacteria or Archaea; this highlights the high diversity of the arsenite-oxidizing microorganisms from the hot spring. A cultivable arsenite-oxidizer Chelatococcu sp. GHS311 was also isolated from the sample using enrichment technique. It can completely convert 75.0 mg/L As(III) into As(V) in 18 days at 45 °C. The arsenite oxidase of GHS311 shares the maximal sequence identity (84.7%) to that of Hydrogenophaga sp. CL3, a non-thermotolerant bacterium. At the temperature lower than 30 °C or higher than 65 °C, the growth of this strain was completely inhibited. These data help us to better understand the diversity and functional features of the thermophilic arsenite-oxidizing microorganisms from hot springs.
Dermal fibroblasts are the main resident cells of the dermis. They have several significant functions related to wound healing, extracellular matrix production and hair cycling. Dermal fibroblasts can also act as sentinels in defence against infection. They express pattern recognition receptors such as toll‐like receptors to sense pathogen components, followed by the synthesis of pro‐inflammatory cytokines (including IL‐6, IFN‐β and TNF‐α), chemokines (such as IL‐8 and CXCL1) and antimicrobial peptides. Dermal fibroblasts also secrete other molecules‐like growth factors and matrix metalloproteinases to benefit tissue repair from infection. Crosstalk between dermal fibroblasts and immune cells may amplify the immune response against infection. Moreover, the transition of a certain adipogenic fibroblasts to adipocytes protects skin from bacterial infection. Together, we discuss the role of dermal fibroblasts in the war against pathogens in this review. Dermal fibroblasts have important immune functions in anti‐infection immunity, which should not be overlooked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.