Traditional feature extraction methods are used to extract the features of signal to construct the fault feature matrix, which exists the complex structure, higher correlation, and redundancy. This will increase the complex fault classification and seriously affect the accuracy and efficiency of fault identification. In order to solve these problems, a new fault diagnosis (PABSFD) method based on the principal component analysis (PCA) and the broad learning system (BLS) is proposed for rotor system in this paper. In the proposed PABSFD method, the PCA with revealing the signal essence is used to reduce the dimension of the constructed feature matrix and decrease the linear feature correlation between data and eliminate the redundant attributes in order to obtain the low-dimensional feature matrix with retaining the essential features for the classification model. Then, the BLS with low time complexity and high classification accuracy is regarded as a classification model to realize the fault identification; it can efficiently accomplish the fault classification of rotor system. Finally, the actual vibration data of rotor system are selected to test and verify the effectiveness of the PABSFD method. The experimental results show that the PCA method can effectively eliminate the feature correlation and realize the dimension reduction of the feature matrix, the BLS can take on better adaptability, faster computation speed, and higher classification accuracy, and the PABSFD method can efficiently and accurately obtain the fault diagnosis results. INDEX TERMS Rotor system, fault diagnosis, principal component analysis (PCA), broad learning system (BLS), dimension reduction.
The bearing system of an alternating current (AC) motor is a nonlinear dynamics system. The working state of rolling bearings directly determines whether the machine is in reliable operation. Therefore, it is very meaningful to study the fault diagnosis and prediction of rolling bearings. In this paper, a new fault diagnosis method based on variational mode decomposition (VMD), Hilbert transform (HT), and broad learning model (BLM), called VHBLFD is proposed for rolling bearings. In the VHBLFD method, the VMD is used to decompose the vibration signals to obtain intrinsic mode functions (IMFs). The HT is used to process the IMFs to obtain Hilbert envelope spectra, which are transformed into the mapped features and the enhancement nodes of BLM according to the complexity of the modeling tasks, and the nonlinear transformation mean according to the characteristics of input data. The BLM is used to classify faults of the rolling bearings of the AC motor. Next, the pseudo-inverse operation is used to obtain the fault diagnosis results. Finally, the VHBLFD is validated by actual vibration data. The experiment results show that the BLM can quickly and accurately be trained. The VHBLFD method can achieve higher identification accuracy for multi-states of rolling bearings and takes on fast operation speed and strong generalization ability.
Broad learning system (BLS) is an effective and efficient incremental learning system without the deep architecture. It has strong feature extraction ability and high computational efficiency. However, it is greatly limited in the applicability of supervised learning. For the collected actual data, more data are unlabeled data and less data are labeled data. To overcome these problems, Fick's law assisted propagation (FLAP) is introduced into the BLS to propose a new semi-supervised classification algorithm, namely FLAP-BLS in this paper. In the FLAP-BLS, the FLAP has the labeled ability from the labeled examples to unlabeled examples, it is used to mark plenty of unlabeled samples by few labeled samples in order to obtain a large number of labeled samples and build the sample data matrix. Then an efficient incremental BLS without deep structure can effectively extract features from large-scale data, it is used to effectively classify the sample matrix. Finally, USPS, MNIST and NORB datasets are selected to validate the effectiveness of the FLAP-BLS. The experiment results show that the FLAP-BLS can effectively classify the few labeled samples and a large of unlabeled samples and obtain classification results with high accuracy, and it has faster classification speed, stronger generalization ability and better stability. The proposed method provides a new method for image classification.
Vibration signals are used to diagnosis faults of the rolling bearing which is symmetric structure. Stochastic resonance (SR) has been widely applied in weak signal feature extraction in recent years. It can utilize noise and enhance weak signals. However, the traditional SR method has poor performance, and it is difficult to determine parameters of SR. Therefore, a new second-order tristable SR method (STSR) based on a new potential combining the classical bistable potential with Woods-Saxon potential is proposed in this paper. Firstly, the envelope signal of rolling bearings is the input signal of STSR. Then, the output of signal-to-noise ratio (SNR) is used as the fitness function of the Seeker Optimization Algorithm (SOA) in order to optimize the parameters of SR. Finally, the optimal parameters are used to set the STSR system in order to enhance and extract weak signals of rolling bearings. Simulated and experimental signals are used to demonstrate the effectiveness of STSR. The diagnosis results show that the proposed STSR method can obtain higher output SNR and better filtering performance than the traditional SR methods. It provides a new idea for fault diagnosis of rotating machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.