Re-expression of miR-215 promoted cell migration and invasion of glioma by targeting RB1. miR-215 can thus be used as a biomarker for tumor progression and prognosis in human high grade glioma.
View related articles View Crossmark data Citing articles: 3 View citing articles Ras-AKT signaling represses the phosphorylation of histone H1.5 at threonine 10 via GSK3 to promote the progression of glioma
Background/Aims: Zurampic is a US FDA approved drug for treatment of gout. However, the influence of Zurampic on pancreatic β-cells remains unclear. The study aimed to evaluate the effects of Zurampic on high uric acid-induced damage of pancreatic β-cells and the possible underlying mechanisms. Methods: INS-1 cells and primary rat islets were stimulated with Zurampic and the mRNA expression of urate transporter 1 (URAT1) was assessed by qRT-PCR. Cells were stimulated with uric acid or uric acid plus Zurampic, and cell viability, apoptosis and ROS release were measured by MTT and flow cytometry assays. Western blot analysis was performed to evaluate the expressions of active Caspase-3 and phosphorylation of AMPK and ERK. Finally, cells were stimulated with uric acid or uric acid plus Zurampic at low/high level of glucose (2.8/16.7 mM glucose), and the insulin release was assessed by ELISA. Results: mRNA expression of URAT1 was decreased by Zurampic in a dose-dependent manner. Uric acid decreased cell viability, promoted cell apoptosis and induced ROS release. Uric acid-induced alterations could be reversed by Zurampic. Activation of Caspase-3 and phosphorylation of AMPK and ERK were enhanced by uric acid, and the enhancements were reversed by Zurampic. Decreased phosphorylation of AMPK and ERK, induced by Zurampic, was further reduced by adding inhibitor of AMPK or ERK. Besides, uric acid inhibited high glucose-induced insulin secretion and the inhibition was rescued by Zurampic. Conclusions: Zurampic has a protective effect on pancreatic β-cells against uric acid induced-damage by inhibiting URAT1 and inactivating the ROS/AMPK/ERK pathway.
The Editors in chief, therefore, no longer have confidence in the results of this study. Xingang Li was not involved in this study and was not aware of its publication. All authors agree to this retraction.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.