Background: Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. Body: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. Conclusions: AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Acinetobacter baumannii, as a nonfermentation Gram-negative bacterium, mainly cause nosocomial infections in critically ill patients. With the widespread of multidrug-resistant Acinetobacter baumannii, the urgency of developing effective therapy options has been emphasized nowadays. Outer membrane vesicles derived from bacteria show potential vaccine effects against bacterial infection in recent study. Our present research is aimed at investigating the mechanisms involved in immune protection of mice after outer membrane vesicle immunization. As our data showed, the outer membrane vesicle from an Acinetobacter baumannii clinical strain could activate bone marrow-derived dendritic cells (BMDCs) to promote Th2 activity together with humoral immune responses to Acinetobacter baumannii-induced sepsis, which might enlighten people to have a better understanding of OMVs' role as a vaccine to prevent bacterial infections.
Type 9 T-helper (Th9) cells are associated with atopic and inflammatory diseases. Their increased levels and functions contribute to a number of inflammatory disorders, where they are accompanied by enhanced Th2-cell activity. However, there is currently no consensus regarding the association between Th9 and Th2 cells. Th9 cells may be induced from naïve T (Th0) cells under specific polarization conditions in vitro, a process driven by the addition of specific cytokines. In the present study, Th0 cells were cultured under Th9-polarizing conditions to promote differentiation into interleukin (IL)-4 + IL-9or IL-4 -IL-9 + T cells after 3 or 5 days in culture, respectively; the mRNA expression levels of IL-9 and IL-4 were consistent with the induced cell types. Simultaneously, the levels of interferon-regulatory factor 4 (IRF-4) and Smad3/Smad4 were significantly increased following Th9-cell polarization. It was therefore proposed that Th2 cells may be generated in the early stages of Th9-cell differentiation, and then ultimately differentiate into Th9 cells via the Smad3/Smad4 and IRF-4 activation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.