In this study, Ca2+–Cr3+ co‐doped LaAlO3, a novel energy‐saving material with significantly enhanced infrared emissivity, was synthesized by solid‐state reaction. The experimental results demonstrated that 20 mol% Ca2+ and 10 mol% Cr3+‐doped LaAlO3, namely La0.8Ca0.2Al0.9Cr0.1O3, had an infrared emissivity as high as 0.92 in the spectral region of 1–5 μm, which was 12 times higher than that of pure LaAlO3. The first‐principles electronic structure calculations revealed that the Ca2+–Cr3+ co‐doping results in the occurrence of impurity energy levels in the forbidden band of LaAlO3, which were mainly composed of the Cr 3d orbitals. Electrons partly occupied these impurity donor states and significantly reduced the energy bandgap, thus the infrared radiation property of LaAlO3 was enhanced. This novel material with high infrared emissivity shows promising applications for energy‐saving in the field of thermal process equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.