Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there is still a need to improve the overall tracking capability. In this paper, we presented a very appealing tracker based on the correlation filter framework. To tackle the problem of the fixed template size in kernel correlation filter tracker, we suggest an effective scale adaptive scheme. Moreover, the powerful features including HoG and color-naming are integrated together to further boost the overall tracking performance. The extensive empirical evaluations on the benchmark videos and VOT 2014 dataset demonstrate that the proposed tracker is very promising for the various challenging scenarios. Our method successfully tracked the targets in about 72% videos and outperformed the state-of-the-art trackers on the benchmark dataset with 51 sequences.
The Visual Object Tracking challenge 2014, VOT2014, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 38 trackers are presented. The number of tested trackers makes VOT 2014 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2014 challenge that go beyond its VOT2013 predecessor are introduced: (i) a new VOT2014 dataset with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2013 evaluation methodology, (iii) a new unit for tracking speed assessment less dependent on the hardware and (iv) the VOT2014 evaluation toolkit that significantly speeds up execution of experiments. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net)
Learning effective feature representations and similarity measures are crucial to the retrieval performance of a content-based image retrieval (CBIR) system. Despite extensive research efforts for decades, it remains one of the most challenging open problems that considerably hinders the successes of real-world CBIR systems. The key challenge has been attributed to the well-known "semantic gap" issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human. Among various techniques, machine learning has been actively investigated as a possible direction to bridge the semantic gap in the long term. Inspired by recent successes of deep learning techniques for computer vision and other applications, in this paper, we attempt to address an open problem: if deep learning is a hope for bridging the semantic gap in CBIR and how much improvements in CBIR tasks can be achieved by exploring the state-of-the-art deep learning techniques for learning feature representations and similarity measures. Specifically, we investigate a framework of deep learning with application to CBIR tasks with an extensive set of empirical studies by examining a state-of-the-art deep learning method (Convolutional Neural Networks) for CBIR tasks under varied settings. From our empirical studies, we find some encouraging results and summarize some important insights for future research.
The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on shortterm tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.