Broadly neutralizing antibodies (bnAbs) targeting the receptor binding site (RBS) of hemagglutinin (HA) have potential for developing into powerful anti-influenza agents. Several previously reported influenza B bnAbs are nevertheless unable to neutralize a portion of influenza B virus variants. HA-specific bnAbs with hemagglutination inhibition (HI) activity may possess the ability to block virus entry directly. Polymeric IgM antibodies are expected to more effectively inhibit virus attachment and entry into target cells due to their higher avidity and/or steric hindrance. We therefore hypothesized that certain RBS-targeted IgM antibodies with strong cross-lineage HI activity might display broader and more potent antiviral activity against rapidly evolving influenza B viruses.Methods: In this study, we generated IgM and IgG bnAbs targeting the RBS of influenza B virus using the murine hybridoma technique. IgM and IgG versions of the same antibodies were then developed by isotype switching and characterized in subsequent in vitro and in vivo experiments.Results: Two IgM and two IgG bnAbs against influenza B virus HA were identified. Of these, one IgM subtype antibody, C7G6-IgM, showed strong HI and neutralization activities against all 20 representative influenza B strains tested, with higher potency and broader breadth of anti-influenza activity in vitro than the IgG subtype variant of itself, or other previously-reported influenza B bnAbs. Furthermore, C7G6-IgM conferred excellent cross-protection against distinct lineages of influenza B viruses in mice and ferrets, performing better than the anti-influenza drug oseltamivir, and showed an additive antiviral effect when administered in combination with oseltamivir. Mechanistically, C7G6-IgM potently inhibits infection with influenza B virus strains from different lineages by blocking viral entry.Conclusion: In summary, our study highlights the potential of IgM subtype antibodies in combatting pathogenic microbes. Moreover, C7G6-IgM is a promising candidate for the development of prophylactics or therapeutics against influenza B infection.
Purpose of the studyHypertension is one of the most common comorbidities in COVID-19 pneumonia. However, whether it is an independent factor on the severity and mortality of COVID-19 has not been studied.Study designIn this study, 736 patients with a PCR-confirmed diagnosis of COVID-19 were included from 12 January 2020 to 25 March 2020. All patients were divided into two groups according to whether or not they were hypertensive. After propensity score matching (PSM) to remove the interference of mismatches in the baseline data, the clinical characteristics and outcomes of angiotensin II receptor blocker (ARB)/ACE inhibitors application were analysed.ResultsA total of 220 (29.9%) patients were hypertensive, and 516 (70.1%) patients were not hypertensive. PSM eliminated demographic and comorbidity differences between the two groups. Of all participants, 32 patients died (4.3% mortality), including 17 out of 220 in the hypertension group (7.7%) and 15 out of 516 in the non-hypertension group (2.9%). The incidence of intensive care unit (ICU) stay in the hypertension group (12.8%) was higher than in the non-hypertension group (5.3%) (p<0.05). Logistic regression analysis showed that hypertension was an independent risk factor for death, not other comorbidities. Kaplan-Meier analysis showed that mortality was higher in the hypertension group than in the non-hypertension group before and after PSM (p<0.05). There was no statistically significant difference in ICU therapy, mortality and hospitalisation time between hypertensive patients with or without ARBs/ACE inhibitors (p>0.05).ConclusionHypertension was an independent risk factor for the severity and mortality of patients with COVID-19. ARBs/ACE inhibitors should not be discontinued in hypertensive patients with COVID-19.
Background Chinese medicine Toujie Quwen granule (TJQW) has proven to be effective in the treatment of mild coronavirus disease 2019 (COVID-19) cases by relieving symptoms, slowing the progression of the disease, and boosting the recovery of patients. But the bioactive compounds and potential mechanisms of TJQW for COVID-19 prevention and treatment are unclear. This study aimed to explore the potential therapeutic mechanism of TJQW in coronavirus disease 2019 (COVID-19) based on an integrated network pharmacology approach. Methods TCMSP were used to search and screen the active ingredients in TJQW. The Swiss TargetPrediction was used to predict the potential targets of active ingredients. Genes co-expressed with ACE2 were considered potential therapeutic targets on COVID-19. Venn diagram was created to show correlative targets of TJQW against COVID-19. Cytoscape was used to construct a “drug-active ingredient-potential target” network, STRING were used to construct protein-protein interaction network, and cytoHubba performed network topology analysis. Enrichment of biological functions and signaling pathways of core targets was performed by using the clusterProfiler package in R software and ClueGO with CluePedia plugins in Cytoscape. Results A total of 156 active ingredients were obtained through oral bioavailability and drug-likeness screenings. Two hundred twenty-seven potential targets of TJQW were related to COVID-19. The top ten core targets are EGFR, CASP3, STAT3, ESR1, FPR2, F2, BCL2L1, BDKRB2, MPO, and ACE. Based on that, we obtained 19 key active ingredients: umbelliprenin, quercetin, kaempferol, luteolin, praeruptorin E, stigmasterol, and oroxylin A. And the enrichment analysis obtained multiple related gene ontology functions and signaling pathways. Lastly, we constructed a key network of “drug-component-target-biological process-signaling pathway”. Our findings suggested that TJQW treatment for COVID-19 was associated with elevation of immunity and suppression of inflammatory stress, including regulation of inflammatory response, viral process, neutrophil mediated immunity, PI3K-Akt signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway, Complement and coagulation cascades, and HIF-1 signaling pathway. Conclusions Our study uncovered the pharmacological mechanism underlying TJQW treatment for COVID-19. These results should benefit efforts for people around the world to gain more knowledge about Chinese medicine TJQW in the treatment of this vicious epidemic COVID-19, and help to address this pressing problem currently facing the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.