Over the past few years, deep neural networks (DNNs) have achieved tremendous success and have been continuously applied in many application domains. However, during the practical deployment in industrial tasks, DNNs are found to be erroneous-prone due to various reasons such as overfitting and lacking of robustness to real-world corruptions during practical usage. To address these challenges, many recent attempts have been made to repair DNNs for version updates under practical operational contexts by updating weights (i.e., network parameters) through retraining, fine-tuning, or direct weight fixing at a neural level. Nevertheless, existing solutions often neglect the effects of neural network architecture and weight relationships across neurons and layers. In this work, as the first attempt, we initiate to repair DNNs by jointly optimizing the architecture and weights at a higher (i.e., block level). We first perform empirical studies to investigate the limitation of whole network-level and layer-level repairing, which motivates us to explore a novel repairing direction for DNN repair at the block level. To this end, we need to further consider techniques to address two key technical challenges, i.e., block localization , where we should localize the targeted block that we need to fix; and how to perform joint architecture and weight repairing . Specifically, we first propose adversarial-aware spectrum analysis for vulnerable block localization that considers the neurons’ status and weights’ gradients in blocks during the forward and backward processes, which enables more accurate candidate block localization for repairing even under a few examples. Then, we further propose the architecture-oriented search-based repairing that relaxes the targeted block to a continuous repairing search space at higher deep feature levels. By jointly optimizing the architecture and weights in that space, we can identify a much better block architecture. We implement our proposed repairing techniques as a tool, named ArchRepair , and conduct extensive experiments to validate the proposed method. The results show that our method can not only repair but also enhance accuracy and robustness, outperforming the state-of-the-art DNN repair techniques.
Over the past few years, deep neural networks (DNNs) have achieved tremendous success and have been continuously applied in many application domains. However, during the practical deployment in the industrial tasks, DNNs are found to be erroneous-prone due to various reasons such as overfitting, lacking robustness to real-world corruptions during practical usage. To address these challenges, many recent attempts have been made to repair DNNs for version updates under practical operational contexts by updating weights (i.e., network parameters) through retraining, fine-tuning, or direct weight fixing at a neural level. Nevertheless, existing solutions often neglect the effects of neural network architecture and weight relationships across neurons and layers. In this work, as the first attempt, we initiate to repair DNNs by jointly optimizing the architecture and weights at a higher (i.e., block) level. We first perform empirical studies to investigate the limitation of whole network-level and layer-level repairing, which motivates us to explore a novel repairing direction for DNN repair at the block level. To this end, we need to further consider techniques to address two key technical challenges, i.e., block localization, where we should localize the targeted block that we need to fix; and how to perform joint architecture and weight repairing. Specifically, we first propose adversarial-aware spectrum analysis for vulnerable block localization that considers the neurons' status and weights' gradients in blocks during the forward and backward processes, which enables more accurate candidate block localization for repairing even under a few examples. Then, we further propose the architecture-oriented search-based repairing that relaxes the targeted block to a continuous repairing search space at higher deep feature levels. By jointly optimizing the architecture and weights in that space, we can identify a much better block architecture. We implement our proposed repairing techniques as a tool, named ArchRepair , and conduct extensive experiments to validate the proposed method. The results show that our method can not only repair but also enhance accuracy & robustness, outperforming the state-of-the-art DNN repair techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.