Abstract. A Nationwide Nitrogen Deposition Monitoring Network (NNDMN) containing 43 monitoring sites was established in China to measure gaseous NH3, NO2, and HNO3 and particulate NH4+ and NO3− in air and/or precipitation from 2010 to 2014. Wet/bulk deposition fluxes of Nr species were collected by precipitation gauge method and measured by continuous-flow analyzer; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet/bulk Nr deposition. On a national basis, the annual average concentrations (1.3–47.0 μg N m−3) and dry plus wet/bulk deposition fluxes (2.9–83.3 kg N ha−1 yr−1) of inorganic Nr species are ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean ± standard deviation) and 19.3 ± 9.2 kg N ha−1 yr−1 across China, with reduced N deposition dominating both dry and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally important to wet/bulk N deposition at the national scale. Therefore, both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.
Abstract. Global reactive nitrogen (Nr) deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH3, NO2 and HNO3, and inorganic nitrogen (NH4+ and NO3−) in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites) in China. Wet deposition fluxes of Nr species were measured directly; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet Nr deposition. The annual average concentrations (1.3–47.0 μg N m−3) and dry plus wet deposition fluxes (2.9–75.2 kg N ha−1 yr−1) of inorganic Nr species ranked by region as North China > Southeast China > Southwest China > Northeast China > Northwest China > the Tibetan Plateau or by land use as urban > rural > background sites, reflecting the impact of anthropogenic Nr emission. Average dry and wet N deposition fluxes were 18.5 and 19.3 kg N ha−1 yr−1, respectively, across China, with reduced N deposition dominating both dry and wet deposition. Our results suggest atmospheric dry N deposition is equally important to wet N deposition at the national scale and both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.
Labor and water scarcity requires crop establishment of double‐season rice to be shifted from traditional transplanting to direct seeding. Owing to the limited thermal time, only ultrashort‐duration cultivars of about 95 d can be used for direct‐seeded, double‐season rice (DDR) in central China. However, whether the shift in crop establishment of double‐season rice can reduce greenhouse gas emissions without yield penalty remains unclear. Field experiments were conducted in Hubei province, central China with three treatments of crop establishment in the early and late seasons of 2017 and 2018. Treatments included DDR with ultrashort‐duration cultivars (DDRU), transplanted double‐season rice with ultrashort‐duration cultivars (TDRU), or with widely grown cultivars which have short duration of about 110 d (TDRS). It was found that crop growth duration of DDRU was 6–20 days shorter than that of TDRU and TDRS, respectively. Ultrashort‐duration cultivars under DDRU achieved 15.1 t ha−1 of annual yield that was 9.4% higher than TDRU, and only 3.2% lower than TDRS. DDRU reduced the annual cumulative CH4 emission by 32.0–46.1%, but had no difference in N2O emission in comparison with TDRU and TDRS. The highest CO2 emission was TDRS followed by DDRU, and then TDRU. As a result, shifting from TDRU and TDRS to DDRU decreased global warming potential and yield‐scaled greenhouse gas intensity by 28.9–53.2% and 20.7–63.8%, respectively. These findings suggest that DDR can be a promising alternative to labor‐ and water‐intensive TDR in central China that offers important advantages in mitigating agricultural greenhouse gas emissions without sacrificing grain yield.
In southern China, the staple food rice (Oryza sativa) field is commonly rotated with brown mustard Brassica juncea. Root-knot nematodes (RKNs) are a major threat to rice production. From 2019 to 2021, B. juncea in 56 fields from 26 counties in Guangxi Province were observed with symptoms of leaf yellowing, stunting, and several hook-shaped galls on the roots. Females and egg masses of Meloidogyne sp. were found within the galls. The females, males, and second-stage juveniles (J2s) were collected, and identified with morphological and molecular characteristics and female perineal patterns. Brassica juncea was transplanted in pots and a pathogenicity test was conducted to confirm the species as Meloidogyne graminicola. In China, this is the first record of a natural infection of mustard with M. graminicola, and this finding has great importance for Chinese mustard production, since this nematode may damage mustard plants and become an additional problem for this crop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.