a b s t r a c tResidents wish to have outdoor spaces to enjoy walking, cycling, and other recreational activities, which are often hindered by the unfavorable thermal comfort conditions, especially in the summer. High building densities lower the average wind speed and this intensifies the urban heat island effects at city scale. The conscientious use of building morphology to create local thermal comfort zone at selected spots in a large precinct is becoming a pressing issue for sustainable urbanization. This paper is a proof of concept study via continuous monitoring of the pedestrian level winds and thermal parameters at two sample days in summer, which include instantaneous air temperature, globe temperature, wind speed and humidity. Three outdoor locations at an university campus are chosen and daytime thermal perceptions at the three sites were evaluated using PET (Physiological equivalent temperature). A PET based new index was defined, which is called the thermally-perceivable environmental parameter difference. By analyzing the simultaneous differences of radiant temperature, wind speed and air temperature between the monitored spots, it is shown that it was the wind speed and radiant temperature differences that were making significant differences in thermal comfort. This pilot study clearly indicates that wind amplification combined with shading effects can generate thermally comfortable conditions in the open ground floor beneath an elevated building, even on a sunny, hot summer day in a subtropical city. This finding helps to alert city planners of additional options available in precinct planning to encourage outdoor activities.
Ovarian cancer remains the most lethal gynecological malignant tumor. In this study, 24 xanthones were isolated and identified from the pericarps of mangosteen (Garcinia mangostana), and their anti-proliferative activities were tested in ovarian cancer cells. Garcinone E (GE) was found to exhibit excellent anti-proliferative effects among the tested xanthones. It significantly inhibited the proliferation in HEY, A2780, and A2780/Taxol cells as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, Hoechst 33342 staining, annexin V/PI staining, and JC-1 staining. It induced endoplasmic reticulum (ER) stress and activated the protective inositol-requiring kinase (IRE)-1α pathway. Knocking down IRE-1α further activated the caspase cascade and caused an increase in cell death. Moreover, GE eliminated the migratory ability of HEY cells by reducing the expression of RhoA and Rac. It also blocked the invasion, which might be related to downregulation of matrix metalloproteinases (MMPs), i.e., MMP-9 and MMP-2, and upregulation of tissue inhibitors of metalloproteinase (TIMP) -1 and TIMP-2. In summary, GE exerts anticancer activities by inducing apoptosis and suppressing migration and invasion in ovarian cancer cells, which indicates its therapeutic potential for ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.