A few-layer MoS2 photodetector driven by poly(vinylidene fluoride-trifluoroethylene) ferroelectrics is achieved. The detectivity and responsitivity are up to 2.2 × 10(12) Jones and 2570 A W(-1), respectively, at 635 nm with ZERO gate bias. E(g) of MoS2 is tuned by the ultrahigh electrostatic field from the ferroelectric polarization. The photoresponse wavelengths of the photodetector are extended into the near-infrared (0.85-1.55 μm).
Two-dimensional (2D) materials have drawn tremendous attention in recent years. Being atomically thin, stacked with van der Waals force and free of surface chemical dangling bonds, 2D materials exhibit several distinct physical properties. To date, 2D materials include graphene, transition metal dichalcogenides (TMDS), black phosphorus, black P As , boron nitride (BN) and so forth. Owing to their various bandgaps, 2D materials have been utilized for photonics and optoelectronics. Photodetectors based on 2D materials with different structures and detection mechanisms have been established and present excellent performance. In this Review, localized field enhanced 2D material photodetectors (2DPDs) are introduced with sensitivity over the spectrum from ultraviolet, visible to infrared in the sight of the influence of device structure on photodetector performance instead of directly illustrating the detection mechanisms. Six types of localized fields are summarized. They are: ferroelectric field, photogating electric field, floating gate induced electrostatic field, interlayer built-in field, localized optical field, and photo-induced temperature gradient field, respectively. These localized fields are proved to effectively promote the detection ability of 2DPDs by suppressing background noise, enhancing optical absorption, improving electron-hole separation efficiency, amplifying photoelectric gain and/or extending the detection range.
Flash memory has become a ubiquitous solid-state memory device, it is widely used in portable digital devices, computers, and enterprise applications. The development of the information age has put forward higher requirements for memory speed and retention performance. Here, we demonstrate an ultrafast non-volatile memory based on MoS2/h-BN/multi-layer graphene (MLG) van der Waals heterostructures, which has an atomic-level flat interface and achieves ultrafast writing/erasing speed (~20 ns), surpassing the reported state-of-the-art flash memory (~100 ns). The ultrafast flash memory could lay the foundation for the next-generation of high-speed non-volatile memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.