Configurable software systems allow stakeholders to derive program variants by selecting features. Understanding the correlation between feature selections and performance is important for stakeholders to be able to derive a program variant that meets their requirements. A major challenge in practice is to accurately predict performance based on a small sample of measured variants, especially when features interact. We propose a variability-aware approach to performance prediction via statistical learning. The approach works progressively with random samples, without additional effort to detect feature interactions. Empirical results on six real-world case studies demonstrate an average of 94 % prediction accuracy based on small random samples. Furthermore, we investigate why the approach works by a comparative analysis of performance distributions. Finally, we compare our approach to an existing technique and guide users to choose one or the other in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.