Mining closed contiguous sequential patterns has been addressed in the literature only recently, through the CCSpan algorithm. CCSpan mines a set of patterns that contains the same information than traditional sets of closed sequential patterns, while being more compact due to the contiguity. Although CCSpan outperforms closed sequential pattern mining algorithms in the general case, it does not scale well on large datasets with long sequences. Moreover, in the context of noisy datasets, the contiguity constraint prevents from mining a relevant result set. Inspired by BIDE, that has proven to be one of the most efficient closed sequential pattern mining algorithm, we propose CCPM that mines closed contiguous sequential patterns, while being scalable. Furthermore, CCPM introduces usable wildcards that address the problem of mining noisy data. Experiments show that CCPM greatly outperforms CCSpan, especially on large datasets with long sequences. In addition, they show that the wildcards allows to efficiently tackle the problem of noisy data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.