In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF) resin—a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.
Bio-oil was added as a substitute for phenol for the preparation of a foaming phenolic resin (PR), which aimed to reduce the brittleness and pulverization of phenolic foam (PF). The components of bio-oil, the chemical structure of bio-oil phenolic resin (BPR), and the mechanical performances, and the morphological and thermal properties of bio-oil phenolic foam (BPF) were investigated. The bio-oil contained a number of phenols and abundant substances with long-chain alkanes. The peaks of OH groups, CH2 groups, C=O groups, and aromatic skeletal vibration on the Fourier transform infrared (FT-IR) spectrum became wider and sharper after adding bio-oil. These suggested that the bio-oil could partially replace phenol to prepare resin and had great potential for toughening resin. When the substitute rate of bio-oil to phenol (B/P substitute rate) was between 10% and 20%, the cell sizes of BPFs were smaller and more uniform than those of PF. The compressive strength and flexural strength of BPFs with a 10–20% B/P substitute rate increased by 10.5–47.4% and 25.0–50.5% respectively, and their pulverization ratios decreased by 14.5–38.6% in comparison to PF. All BPFs maintained good flame-retardant properties, thermal stability, and thermal isolation, although the limited oxygen index (LOI) and residual masses by thermogravimetric (TG) analysis of BPFs were lower and the thermal conducticity was slightly greater than those of PF. This indicated that the bio-oil could be used as a renewable toughening agent for PF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.