Fungal laccases have been widely used in industry. The expression of laccase often is repressible by the primary carbon source glucose in many fungi. The underlying basis is largely unclear. We demonstrate here that a gene, TSP2-1, was required for laccase repression by glucose in the basidiomycete Cryptococcus neoformans. TSP2-1 encodes a Tsp2-type tetraspanin. The disruption of TSP2-1 resulted in constant melanin formation and the expression of the laccase gene LAC1. This derepression phenotype was restorable by 10 mM exogenous cyclic AMP (cAMP). A capsule defect in the mutant tsp2-1⌬ also was restored by cAMP. The results indicate an interaction of Tsp2-1 with the cAMP-dependent protein kinase A (PKA) pathway that has been shown to modulate laccase repression and capsule biosynthesis in this fungus. Other roles of TSP2-1, e.g., in maintaining cell membrane integrity and stress resistance, also were defined. This work reveals a Tsp2-1-dependent glucose repression in C. neoformans. The function of Tsp2-type tetraspanin Tsp2-1 is described for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.