Mesoporous silica nanoparticles (MSNs) with large surface area, tunable pore size, and low toxicity can act as suitable vehicles for drug and gene delivery. An MSN/DNA/PEI complex delivery system was prepared by using MSNs to hold plasmid DNA coated with polyethyleneimine (PEI), and the dry powder formulation was produced by freeze-drying with trehalose as lyoprotectant. The MSN/DNA/PEI complexes successfully enhanced the gene expression with about 1.5-fold higher efficiency as compared with the control, and even better effects and lower toxicity were achieved at lower content of PEI. Also, this gene delivery system showed nearly sixfold higher efficiency in the serum-containing condition than the control, so further application of these vehicles in vivo is highly appreciated. Besides, the trehalose containing lyophilized formulation could hold the availability for at least 4 months of storing at room temperature, presenting the potential for industrial production and transportation of gene therapy.
Microencapsulation is an effective technology used to protect probiotics against harsh conditions. Extrusion is a commonly used microencapsulation method utilized to prepare probiotics microcapsules that is regarded as economical and simple to operate. This research aims to prepare acid-resistant probiotic microcapsules with high viability after freeze-drying and optimized storage stability. Streptococcus thermophilus IFFI 6038 (IFFI 6038) cells were mixed with trehalose and alginate to fabricate microcapsules using extrusion. These capsules were subsequently coated with chitosan to obtain chitosan-trehalose-alginate microcapsules with shell-matrix structure. Chitosan-alginate microcapsules (without trehalose) were also prepared using the same method. The characteristics of the microcapsules were observed by measuring the freeze-dried viability, acid resistance, and long-term storage stability of the cells. The viable count of IFFI 6038 in the chitosan-trehalose-alginate microcapsules was 8.34 ± 0.30 log CFU g after freeze-drying (lyophilization), which was nearly 1 log units g greater than the chitosan-alginate microcapsules. The viability of IFFI 6038 in the chitosan-trehalose-alginate microcapsules was 6.45 ± 0.09 log CFU g after 120 min of treatment in simulated gastric juices, while the chitosan-alginate microcapsules only measured 4.82 ± 0.22 log CFU g . The results of the long-term storage stability assay indicated that the viability of IFFI 6038 in chitosan-trehalose-alginate microcapsules was higher than in chitosan-alginate microcapsules after storage at 25 °C. Trehalose played an important role in the stability of IFFI 6038 during storage. The novel shell-matrix chitosan-trehalose-alginate microcapsules showed optimal stability and acid resistance, demonstrating their potential as a delivery vehicle to transport probiotics.
Beta-carotene is important for fortification of nutritional products while its application is limited by instability. The influence of maltodextrin (MDX) on physicochemical properties and stability of beta-carotene emulsions stabilized by sodium caseinate (SC) was investigated. The emulsions were characterized by dynamic light scattering (DLS), laser diffraction (LD), transmission electron microscopy (TEM), rheometer, and turbiscan lab expert. The effects of pH, ionic strength, and freeze-thaw on stability of emulsions were observed. The emulsions could tolerate up to 2 mol/L NaCl or 10 mmol/L CaCl and showed Newtonian behavior. The droplet diameter, polydispersity index, and zeta-potential did not change obviously after 3 months storage at 4°C in dark conditions. The emulsions with MDX showed excellent freeze-thaw stability and gave favorite protection for beta-carotene. The retention ratio of beta-carotene in the emulsions with MDX was above 92.1% after 3 months storage while that in the one without MDX was only 62.7%. The study may provide a promising strategy to improve stability of sensitive nutraceuticals without adding synthetic antioxidants. The findings obtained could provide fundamental basis for rational design of emulsion delivery systems when freeze-thawing is required during manufacturing process or storage period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.