Class temporal speci¯cation is a kind of important program speci¯cations especially for objectoriented programs, which speci¯es that interface methods of a class should be called in a particular sequence. Currently, most existing approaches mine this kind of speci¯cations based on¯nite state automaton. Observed that¯nite state automaton is a kind of deterministic models with inability to tolerate noise. In this paper, we propose to mine class temporal speci¯cations relying on a probabilistic model extending from Markov chain. To the best of our knowledge, this is the¯rst work of learning speci¯cations from object-oriented programs dynamically based on probabilistic models. Di®erent from similar works, our technique does not require annotating programs. Additionally, it learns speci¯cations in an online mode, which can re¯ne existing models continuously. Above all, we talk about problems regarding noise and connectivity of mined models and a strategy of computing thresholds is proposed to resolve them. To investigate our technique's feasibility and e®ectiveness, we implemented our technique in a prototype tool ISpecMiner and used it to conduct several experiments. Results of the experiments show that our technique can deal with noise e®ectively and useful speci¯cations can be learned. Furthermore, our method of computing thresholds provides a strong assurance for mined models to be connected.
Although convolutional neural networks have achieved success in the field of image classification, there are still challenges in the field of agricultural product quality sorting such as machine vision-based jujube defects detection. The performance of jujube defect detection mainly depends on the feature extraction and the classifier used. Due to the diversity of the jujube materials and the variability of the testing environment, the traditional method of manually extracting the features often fails to meet the requirements of practical application. In this paper, a jujube sorting model in small data sets based on convolutional neural network and transfer learning is proposed to meet the actual demand of jujube defects detection. Firstly, the original images collected from the actual jujube sorting production line were pre-processed, and the data were augmented to establish a data set of five categories of jujube defects. The original CNN model is then improved by embedding the SE module and using the triplet loss function and the center loss function to replace the softmax loss function. Finally, the depth pre-training model on the ImageNet image data set was used to conduct training on the jujube defects data set, so that the parameters of the pre-training model could fit the parameter distribution of the jujube defects image, and the parameter distribution was transferred to the jujube defects data set to complete the transfer of the model and realize the detection and classification of the jujube defects. The classification results are visualized by heatmap through the analysis of classification accuracy and confusion matrix compared with the comparison models. The experimental results show that the SE-ResNet50-CL model optimizes the fine-grained classification problem of jujube defect recognition, and the test accuracy reaches 94.15%. The model has good stability and high recognition accuracy in complex environments.
As an important link in the processing of jujube products, the qualities classification of jujubes have an important impact on improving the value of commodities. In this study, jujube target was extracted based on the RGB color space characteristics and then put into a black background through a mask. The data augmentation method combined deep convolutional generative adversarial networks and rigid transformation (RT) was used to improve the data richness of defective jujubes, effectively solve the imbalance problem between different types of jujube data. A composite convolutional neural network (CNN) method based on residual networks was designed to effectively solve the problem of misjudgment between jujubes with subtle defects and healthy jujubes. The overall results illustrated that the defect detection accuracy of the proposed scheme was 99.2%, which was superior to the widely used support vector machine and CNN methods. This work could be applied to the actual processing site and greatly improved the quality classification effect of jujubes.Practical ApplicationsCracks, peeling, wrinkles, and other defects have seriously affected the quality and value of jujubes, and the quality classification of jujubes is imperative. This paper proposes a set of deep learning schemes from three aspects of improving data quality, enhancing data richness, and designing more accurate and effective classification models. Experimental results show that this scheme can significantly improve the accuracy of jujube quality grading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.