Test case prioritization (TCP) attempts to improve fault detection effectiveness by scheduling the important test cases to be executed earlier, where the importance is determined by some criteria or strategies. Adaptive random sequences (ARSs) can be used to improve the effectiveness of TCP based on white-box information (such as code coverage information) or black-box information (such as test input information). To improve the testing effectiveness for object-oriented software in regression testing, in this paper, we present an ARS approach based on clustering techniques using black-box information. We use two clustering methods:(1) clustering test cases according to the number of objects and methods, using the K-means and K-medoids clustering algorithms; and (2) clustered based on an object and method invocation sequence similarity metric using the K-medoids clustering algorithm. Our approach can construct ARSs that attempt to make their neighboring test cases as diverse as possible. Experimental studies were also conducted to verify the proposed approach, with the results showing both enhanced probability of earlier fault detection, and higher effectiveness than random prioritization and method coverage TCP technique.
Random testing (RT) is a well-studied testing method that has been widely applied to the testing of many applications, including embedded software systems, SQL database systems, and Android applications. Adaptive random testing (ART) aims to enhance RT's failure-detection ability by more evenly spreading the test cases over the input domain. Since its introduction in 2001, there have been many contributions to the development of ART, including various approaches, implementations, assessment and evaluation methods, and applications. This paper provides a comprehensive survey on ART, classifying techniques, summarizing application areas, and analyzing experimental evaluations. This paper also addresses some misconceptions about ART, and identifies open research challenges to be further investigated in the future work.
Combinatorial interaction testing is a well-recognized testing method, and has been widely applied in practice, often with the assumption that all test cases in a combinatorial test suite have the same fault detection capability. However, when testing resources are limited, an alternative assumption may be that some test cases are more likely to reveal failure, thus making the order of executing the test cases critical. To improve testing cost-e®ectiveness, prioritization of combinatorial test cases is employed. The most popular approach is based on interaction coverage, which prioritizes combinatorial test cases by repeatedly choosing an unexecuted test case that covers the largest number of uncovered parameter value combinations of a given strength (level of interaction among parameters). However, this approach su®ers from some drawbacks. Based on previous observations that the majority of faults in practical systems can usually be triggered with parameter interactions of small strengths, we propose a new strategy of prioritizing combinatorial test cases by incrementally adjusting the strength values. Experimental results show that our method performs better than the random prioritization technique and the technique of prioritizing combinatorial test suites according to test case . Downloaded from www.worldscientific.com by UNIVERSITY OF OTAGO on 01/05/15. For personal use only.generation order, and has better performance than the interaction-coverage-based test prioritization technique in most cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.