Test case prioritization (TCP) attempts to improve fault detection effectiveness by scheduling the important test cases to be executed earlier, where the importance is determined by some criteria or strategies. Adaptive random sequences (ARSs) can be used to improve the effectiveness of TCP based on white-box information (such as code coverage information) or black-box information (such as test input information). To improve the testing effectiveness for object-oriented software in regression testing, in this paper, we present an ARS approach based on clustering techniques using black-box information. We use two clustering methods:(1) clustering test cases according to the number of objects and methods, using the K-means and K-medoids clustering algorithms; and (2) clustered based on an object and method invocation sequence similarity metric using the K-medoids clustering algorithm. Our approach can construct ARSs that attempt to make their neighboring test cases as diverse as possible. Experimental studies were also conducted to verify the proposed approach, with the results showing both enhanced probability of earlier fault detection, and higher effectiveness than random prioritization and method coverage TCP technique.
a b s t r a c tContext: Adaptive random testing (ART), originally proposed as an enhancement of random testing, is often criticized for the high computation overhead of many ART algorithms. Mirror ART (MART) is a novel approach that can be generally applied to improve the efficiency of various ART algorithms based on the combination of ''divide-and-conquer'' and ''heuristic'' strategies. Objective: The computation overhead of the existing MART methods is actually on the same order of magnitude as that of the original ART algorithms. In this paper, we aim to further decrease the order of computation overhead for MART. Method: We conjecture that the mirroring scheme in MART should be dynamic instead of static to deliver a higher efficiency. We thus propose a new approach, namely dynamic mirror ART (DMART), which incrementally partitions the input domain and adopts new mirror functions. Results: Our simulations demonstrate that the new DMART approach delivers comparable failure-detection effectiveness as the original MART and ART algorithms while having much lower computation overhead. The experimental studies further show that the new approach also delivers a better and more reliable performance on programs with failure-unrelated parameters. Conclusion: In general, DMART is much more cost-effective than MART. Since its mirroring scheme is independent of concrete ART algorithms, DMART can be generally applied to improve the cost-effectiveness of various ART algorithms.
Abstract-Random testing (RT) has been identified as one of the most popular testing techniques, due to its simplicity and ease of automation. Adaptive random testing (ART) has been proposed as an enhancement to RT, improving its fault-detection effectiveness by evenly spreading random test inputs across the input domain. To achieve the even spreading, ART makes use of distance measurements between consecutive inputs. However, due to the nature of object-oriented software (OOS), its distance measurement can be particularly challenging: Each input may involve multiple classes, and interaction of objects through method invocations. Two previous studies have reported on how to test OOS at a single-class level using ART. In this study, we propose a new similarity metric to enable multiclass level testing using ART. When generating test inputs (for multiple classes, a series of objects, and a sequence of method invocations), we use the similarity metric to calculate the distance between two series of objects, and between two sequences of method invocations. We integrate this metric with ART and apply it to a set of open-source OO programs, with the empirical results showing that our approach outperforms other RT and ART approaches in OOS testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.