BackgroundThe hydrotreatment of oleochemical/lipid feedstocks is currently the only technology that provides significant volumes (millions of litres per year) of “conventional” biojet/sustainable aviation fuels (SAF). However, if biojet fuels are to be produced in sustainably sourced volumes (billions of litres per year) at a price comparable with fossil jet fuel, biomass-derived “advanced” biojet fuels will be needed. Three direct thermochemical liquefaction technologies, fast pyrolysis, catalytic fast pyrolysis and hydrothermal liquefaction were assessed for their potential to produce “biocrudes” which were subsequently upgraded to drop-in biofuels by either dedicated hydrotreatment or co-processed hydrotreatment.ResultsA significant biojet fraction (between 20.8 and 36.6% of total upgraded fuel volume) was produced by all of the processes. When the fractions were assessed against general ASTM D7566 specifications they showed significant compliance, despite a lack of optimization in any of the process steps. When the life cycle analysis GHGenius model was used to assess the carbon intensity of the various products, significant emission reductions (up to 74%) could be achieved.ConclusionsIt was apparent that the production of biojet fuels based on direct thermochemical liquefaction of biocrudes, followed by hydrotreating, has considerable potential.
Co-processing biogenic feedstocks in oil refineries will reduce the greenhouse gas emissions normally associated with fossil-derived transportation fuels. The fluid catalytic cracker (FCC) within a refinery is a robust processing unit and will probably be a preferred insertion point if biocrudes, produced by the liquefaction of biomass, are co-processed within a refinery. Fluid catalytic cracking results in a wide range of intermediate products which can be upgraded to gasoline, diesel, heavy fuel oil and liquified petroleum gas blendstocks. Coke is also produced and provides heating for feedstocks, the endothermic catalytic cracking reactions and the regeneration of the FCC catalyst. However, coke combustion also generates carbon dioxide and is a significant source of refinery greenhouse gas emissions. As detailed here, the continuous nature of the process makes the physical evaluation of any biogenic coke fraction, via methods such as C14 isotope analysis, quite challenging. However, quantifying the stack gases provides one way of assessing the renewable content of the carbon dioxide derived from coke combustion. The hourly data from 1 year of commercial operation was assessed using linear and Bayesian ridge regression to quantify the burning coefficient of the coke when co-processing lipids at the FCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.