Panoramic video is a sort of video recorded at the same point of view to record the full scene. With the development of video surveillance and the requirement for 3D converged video surveillance in smart cities, CPU and GPU are required to possess strong processing abilities to make panoramic video. The traditional panoramic products depend on post processing, which results in high power consumption, low stability and unsatisfying performance in real time. In order to solve these problems,we propose a real-time panoramic video stitching framework.The framework we propose mainly consists of three algorithms, L-ORB image feature extraction algorithm, feature point matching algorithm based on LSH and GPU parallel video stitching algorithm based on CUDA.The experiment results show that the algorithm mentioned can improve the performance in the stages of feature extraction of images stitching and matching, the running speed of which is 11 times than that of the traditional ORB algorithm and 639 times than that of the traditional SIFT algorithm. Based on analyzing the GPU resources occupancy rate of each resolution image stitching, we further propose a stream parallel strategy to maximize the utilization of GPU resources. Compared with the L-ORB algorithm, the efficiency of this strategy is improved by 1.6-2.5 times, and it can make full use of GPU resources. The performance of the system accomplished in the paper is 29.2 times than that of the former embedded one, while the power dissipation is reduced to 10W.
Recent advancements in convolutional neural networks based object detection have enabled analyzing the mounting video data with high accuracy. However, inference speed is a major drawback of these video analysis system because of the heavy object detectors. To address the computational and practicability challenges of video analysis, we propose FastQ, a system for efficient querying over video at scale. Given a target video, FastQ can automatically label the category and number of objects for each frame. We introduce a novel lightweight object detector named FDet to improve the efficiency of query system. First, a difference detector filters the frames whose difference is less than the threshold. Second, FDet is employed to efficiently label the remaining frames. To reduce inference time, FDet detects a center keypoint and a pair of corners from the feature map generated by a lightweight backbone to predict the bounding boxes. FDet completely avoid the complicated computation related to anchor boxes. Compared with state-of-the-art real-time detectors, FDet achieves superior performance with 29.1% AP on COCO benchmark at 25.3ms. Experiments show that FastQ achieves 150× to 300× speed-ups while maintaining more than 90% accuracy in video queries.
CCS CONCEPTS• Computing methodologies → Object detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.