Background-The current proarrhythmia safety testing paradigm, although highly efficient in preventing new torsadogenic drugs from entering the market, has important limitations that can restrict the development and use of valuable new therapeutics. The CiPA (Comprehensive in vitro Proarrhythmia Assay) proposes to overcome these limitations by evaluating drug effects on multiple cardiac ion channels in vitro and using these data in a predictive in silico model of the adult human ventricular myocyte. A set of drugs with known clinical torsade de pointes risk was selected to develop and calibrate the in silico model. Methods and Results-Manual patch-clamp data assessing drug effects on expressed cardiac ion channels were integrated into the O'Hara-Rudy myocyte model modified to include dynamic drug-hERG channel (human Ether-à-go-go-Related Gene) interactions. Together with multichannel pharmacology data, this model predicts that compounds with high torsadogenic risk are more likely to be trapped within the hERG channel and show stronger reverse use dependency of action potential prolongation. Furthermore, drug-induced changes in the amount of electronic charge carried by the late sodium and L-type calcium currents was evaluated as a potential metric for assigning torsadogenic risk. Conclusions-Modeling dynamic drug-hERG channel interactions and multi-ion channel pharmacology improves the prediction of torsadogenic risk. With further development, these methods have the potential to improve the regulatory assessment of drug safety models under the CiPA paradigm. (Circ Arrhythm Electrophysiol. 2017;10:e004628.
The International Council on Harmonization (ICH) S7B and E14 regulatory guidelines are sensitive but not specific for predicting which drugs are pro-arrhythmic. In response, the Comprehensive In Vitro Proarrhythmia Assay (CiPA) was proposed that integrates multi-ion channel pharmacology data in vitro into a human cardiomyocyte model in silico for proarrhythmia risk assessment. Previously, we reported the model optimization and proarrhythmia metric selection based on CiPA training drugs. In this study, we report the application of the prespecified model and metric to independent CiPA validation drugs. Over two validation datasets, the CiPA model performance meets all pre-specified measures for ranking and classifying validation drugs, and outperforms alternatives, despite some in vitro data differences between the two datasets due to different experimental conditions and quality control procedures. This suggests that the current CiPA model/metric may be fit for regulatory use, and standardization of experimental protocols and quality control criteria could increase the model prediction accuracy even further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.