The development of bromodomain and extraterminal domain (BET) bromodomain inhibitors and their examination in clinical studies, particularly in oncology settings, has garnered substantial recent interest. An effort to generate novel BET bromodomain inhibitors with excellent potency and drug metabolism and pharmacokinetics (DMPK) properties was initiated based upon elaboration of a simple pyridone core. Efforts to develop a bidentate interaction with a critical asparagine residue resulted in the incorporation of a pyrrolopyridone core, which improved potency by 9-19-fold. Additional structure-activity relationship (SAR) efforts aimed both at increasing potency and improving pharmacokinetic properties led to the discovery of the clinical candidate 63 (ABBV-075/mivebresib), which demonstrates excellent potency in biochemical and cellular assays, advantageous exposures and half-life both in animal models and in humans, and in vivo efficacy in mouse models of cancer progression and inflammation.
Dasabuvir [also known as or N-(6-(3-(tert-butyl)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2-methoxyphenyl)naphthalen-2-yl)methanesulfonamide] is a potent non-nucleoside NS protein 5B polymerase inhibitor of the hepatitis C virus (HCV) and is being developed in combination with paritaprevir/ritonavir and ombitasvir in an oral regimen with three direct-acting antivirals for the treatment of patients infected with HCV genotype 1. This article describes the mass balance, metabolism, and disposition of dasabuvir in humans. After administration of a single oral dose of 400-mg [ 14 C]dasabuvir (without coadministration of paritaprevir/ritonavir and ombitasvir) to four healthy male volunteers, the mean total percentage of the administered radioactive dose recovered was 96.6%. The recovery from the individual subjects ranged from 90.8% to 103%. Dasabuvir and corresponding metabolites were predominantly eliminated in feces (94.4% of the dose) and minimally through renal excretion (2.2% of the dose). The biotransformation of dasabuvir primarily involves hydroxylation of the tert-butyl group to form active metabolite M1 [N-(6-(5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-(1-hydroxy-2-methylpropan-2-yl)-2-methoxyphenyl) naphthalen-2-yl)methanesulfonamide], followed by glucuronidation and sulfation of M1 and subsequent secondary oxidation. Dasabuvir was the major circulating component (58% of total radioactivity) in plasma, followed by metabolite M1 (21%). Other minor metabolites represented < 10% each of total circulating radioactivity. Dasabuvir was cleared mainly through cytochrome P450-mediated oxidation metabolism to M1. M1 and its glucuronide and sulfate conjugates were primarily eliminated in feces. Subsequent oxidation of M1 to the tert-butyl acid, followed by formation of the corresponding glucuronide conjugate, plays a secondary role in elimination. Cytochrome P450 profiling indicated that dasabuvir was mainly metabolized by CYP2C8, followed by CYP3A4. In summary, the biotransformation pathway and clearance routes of dasabuvir were characterized, and the structures of metabolites in circulation and excreta were elucidated.
Paritaprevir (also known as ABT-450), a potent NS3-4A serine protease inhibitor [identified by AbbVie (North Chicago, IL) and Enanta Pharmaceuticals (Watertown, MA)] of the hepatitis C virus (HCV), has been developed in combination with ombitasvir and dasabuvir in a threedirect-acting antiviral agent (DAA) oral regimen for the treatment of patients infected with HCV genotype 1. This article describes the mass balance, metabolism, and disposition of paritaprevir in humans. After the administration of a single 200-mg oral dose of [ 14 C]paritaprevir coadministered with 100 mg of ritonavir to four male healthy volunteers, the mean total percentage of the administered radioactive dose recovered was 96.5%, with recovery in individual subjects ranging from 96.0% to 96.9%. Radioactivity derived from [ 14 C]paritaprevir was primarily eliminated in feces (87.8% of the dose). Radioactivity recovered in urine accounted for 8.8% of the dose. The biotransformation of paritaprevir in humans involves: 1) P450-mediated oxidation on the olefinic linker, the phenanthridine group, the methylpyrazinyl group, or combinations thereof; and 2) amide hydrolysis at the acyl cyclopropane-sulfonamide moiety and the pyrazine-2-carboxamide moiety. Paritaprevir was the major component in plasma [90.1% of total radioactivity in plasma, AUC from time 0 to 12 hours (AUC 0-12hours ) pool]. Five minor metabolites were identified in plasma, including the metabolites M2, M29, M3, M13, and M6; none of the metabolites accounted for greater than 10% of the total radioactivity. Paritaprevir was primarily eliminated through the biliary-fecal route followed by microfloramediated sulfonamide hydrolysis to M29 as a major component in feces (approximately 60% of dose). In summary, the biotransformation and clearance pathways of paritaprevir were characterized, and the structures of metabolites in circulation and excreta were elucidated.
Ombitasvir (also known as ABT-267) is a potent inhibitor of hepatitis C virus (HCV) nonstructural protein 5A (NS5A), which has been developed in combination with paritaprevir/ritonavir and dasabuvir in a three direct-acting antiviral oral regimens for the treatment of patients infected with HCV genotype 1. This article describes the mass balance, metabolism, and disposition of ombitasvir in humans without coadministration of paritaprevir/ritonavir and dasabuvir. Following the administration of a single 25-mg oral dose of [ 14 C]ombitasvir to four healthy male volunteers, the mean total percentage of the administered radioactive dose recovered was 92.1% over the 192-hour sample collection in the study. The recovery from the individual subjects ranged from 91.4 to 93.1%. Ombitasvir and corresponding metabolites were primarily eliminated in feces (90.2% of dose), mainly as unchanged parent drug (87.8% of dose), but minimally through renal excretion (1.9% of dose). Biotransformation of ombitasvir in human involves enzymatic amide hydrolysis to form M23 (dianiline), which is further metabolized through cytochrome P450-mediated oxidative metabolism (primarily by CYP2C8) at the tert-butyl group to generate oxidative and/or C-desmethyl metabolites. [ 14 C]Ombitasvir, M23, M29, M36, and M37 are the main components in plasma, representing about 93% of total plasma radioactivity. The steadystate concentration measurement of ombitasvir metabolites by liquid chromatography-mass spectrometry analysis in human plasma following multiple doses of ombitasvir, in combination with paritaprevir/ritonavir and dasabuvir, confirmed that ombitasvir is the main component (51.9% of all measured drug-related components), whereas M29 (19.9%) and M36 (13.1%) are the major circulating metabolites. In summary, the study characterized ombitasvir metabolites in circulation, the metabolic pathways, and the elimination routes of the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.