Aeroacoustic noise in multiple rotor drones has been increasingly recognized as a crucial issue, while noise reduction is normally associated with a trade-off between aerodynamic performance and sound suppression as well as sound quality improvement. Here, we propose an integrated methodology to evaluate both aeroacoustics and psychoacoustics of a single propeller. For a loop-type propeller, an experimental investigation was conducted in association with its aerodynamic and acoustic characteristics via a hover stand test in an anechoic chamber; the psychoacoustic performance was then examined with psychoacoustic annoyance models to evaluate five psychoacoustic metrics comprising loudness, fluctuation strength, roughness, sharpness, and tonality. A comparison of the figure of merit (FM), the overall sound pressure level (OASPL) and psychoacoustic metrics was undertaken among a two-blade propeller, a four-blade propeller, the loop-type propeller, a wide chord loop-type propeller, and a DJI Phantom III propeller, indicating that the loop-type propeller enables a remarkable reduction in OASPL and a noticeable improvement in sound quality while achieving comparable aerodynamic performance. Furthermore, the psychoacoustic analysis demonstrates that the loop-type propeller can improve the psychological response to various noises in terms of the higher-level broadband and lower-level tonal noise components. It is thus verified that the integrated evaluation methodology of aeroacoustics and psychoacoustics can be a useful tool in the design of low-noise propellers in association with multirotor drones.
This paper presents a novel integrated study of the aerodynamic performance and acoustic signature of multirotor propellers with a specific focus on the blade twist angle effect. Experimental measurements and computational fluid dynamic (CFD) simulations were utilized to examine and compare the aerodynamic performance and noise reduction between twisted and untwisted blades. A 2D phase-locked particle image velocimetry (PIV) was employed to visualize flow structures at specific blade locations in terms of tip vortices and trailing edge vortices. Good consistency between the simulations and measurements was observed in aerodynamic and acoustic performance. It is verified that the propellers with twisted blades enable a maximum increase of 9.3% in the figure of merit compared to untwisted blades while achieving the same thrust production and are further capable to reduce overall sound pressure level by a maximum of 4.3 dB. CFD results reveal that the twisted propeller remarkedly reduces far-field loading noise by suppressing trailing-edge vortices, hence mitigating kinetic energy fluctuation at the blade tip, while having minimal impact on thickness noise. This study points to the crucial role of blade twists in altering the aeroacoustic characteristics, indicating that optimal designs could lead to significant improvements in both aerodynamic and acoustic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.