The oil of Acer truncatum Bunge seed (ASO) is rich in ω-9 (53.93%) and ω-6 (30.7%) fatty acids (FAs), and characterized by 3-7% nervonic acid (NA, C24:1ω-9). Evidence suggests that...
The purpose of this study was to design an unmanned patrol service in combination with artificial intelligence technology to solve the problem of underground vehicle patrol. This design used the Raspberry Pi development board, L298N driver chip, Raspberry Pi camera, and other major hardware equipment to transform the remote control car. This design used Python as the programming language. By writing Python code, the car could be driven under the control of the computer keyboard and the camera was turned on for data collection. The Keras neural network library was used to quickly build a neural network model, the collected data was used to train the model, and the model was finally generated. The model was placed in the TensorFlow system for processing, and the car could travel in a preset track for unmanned driving.
Indoor localization and navigation have become an increasingly important problem in both industry and academia with the widespread use of mobile smart devices and the development of network techniques. The Wi-Fi-based technology shows great potential for applications due to the ubiquitous Wi-Fi infrastructure in public indoor environments. Most existing approaches use trilateration or machine learning methods to predict locations from a set of annotated Wi-Fi observations. However, annotated data are not always readily available. In this paper, we propose a robot-aided data collection strategy to obtain the limited but high-quality labeled data and a large amount of unlabeled data. Furthermore, we design two deep learning models based on a variational autoencoder for the localization and navigation tasks, respectively. To make full use of the collected data, a hybrid learning approach is developed to train the models by combining supervised, unsupervised and semi-supervised learning strategies. Extensive experiments suggest that our approach enables the models to learn effective knowledge from unlabeled data with incremental improvements, and it can achieve promising localization and navigation performance in a complex indoor environment with obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.