a b s t r a c tTo predict regional-scale winter wheat yield, we developed a crop model and data assimilation framework that assimilated leaf area index (LAI) derived from Landsat TM and MODIS data into the WOFOST crop growth model. We measured LAI during seven phenological phases in two agricultural cities in China's Hebei Province. To reduce cloud contamination, we applied Savitzky-Golay (S-G) filtering to the MODIS LAI products to obtain a filtered LAI. We then regressed field-measured LAI on Landsat TM vegetation indices to derive multi-temporal TM LAIs. We developed a nonlinear method to adjust LAI by accounting for the scale mismatch between the remotely sensed data and the model's state variables. The TM LAI and scale-adjusted LAI datasets were assimilated into the WOFOST model to allow evaluation of the yield estimation accuracy. We constructed a four-dimensional variational data assimilation (4DVar) cost function to account for the observations and model errors during key phenological stages. We used the shuffled complex evolution-University of Arizona algorithm to minimize the 4DVar cost function between the remotely sensed and modeled LAI and to optimize two important WOFOST parameters. Finally, we simulated winter wheat yield in a 1-km grid for cells with at least 50% of their area occupied by winter wheat using the optimized WOFOST, and aggregated the results at a regional scale. The scale adjustment substantially improved the accuracy of regional wheat yield predictions (R 2 = 0.48; RMSE = 151.92 kg ha −1 ) compared with the unassimilated results (R 2 = 0.23; RMSE = 373.6 kg ha −1 ) and the TM LAI results (R 2 = 0.27; RMSE = 191.6 kg ha −1 ). Thus, the assimilation performance depends strongly on the LAI retrieval accuracy and the scaling correction. Our research provides a scheme to employ remotely sensed data, ground-measured data, and a crop growth model to improve regional crop yield estimates.
Northeast China is the leading grain production region in China where one-fifth of the national grain is produced; however, consistent and reliable crop maps are still unavailable, impeding crop management decisions for regional and national food security. Here, we produced annual 10-m crop maps of the major crops (maize, soybean, and rice) in Northeast China from 2017 to 2019, by using (1) a hierarchical mapping strategy (cropland mapping followed by crop classification), (2) agro-climate zone-specific random forest classifiers, (3) interpolated and smoothed 10-day Sentinel-2 time series data, and (4) optimized features from spectral, temporal, and texture characteristics of the land surface. The resultant maps have high overall accuracies (OA) spanning from 0.81 to 0.86 based on abundant ground truth data. The satellite estimates agreed well with the statistical data for most of the municipalities (R2 ≥ 0.83, p < 0.01). This is the first effort on regional annual crop mapping in China at the 10-m resolution, which permits assessing the performance of the soybean rejuvenation plan and crop rotation practice in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.