As the acquisition unit of gas information, the sensor array directly determines the overall performance of the electronic nose system (E-nose). This paper proposed a new method for optimizing the sensor array. Firstly, four evaluation indicators (sensitivity, selectivity, correlation, and repeatability) were selected to evaluate the sensor array. Subsequently, different evaluation indicators were assigned different weight values according to their contributions to the overall performance of the E-nose. Finally, a comprehensive evaluation model was established based on the EWM-TOPSIS algorithm to optimize the sensor array. In order to verify the effectiveness of the as-proposed model, it was applied to the optimization of the E-nose sensor array composed of 10 gas sensors, and the influence of the sensor array optimization on the gas recognition ability of the E-nose was investigated. The experimental results showed that the optimized sensor array can identify the CO-CH4 gas mixtures with an accuracy of 96.5%, which a significant improvement compared with the accuracy of 78.3% before the sensor array optimization.
The inherent cross-sensitivity of semiconductor gas sensors makes them extremely challenging to accurately detect mixed gases. In order to solve this problem, this paper designed an electronic nose (E-nose) with seven gas sensors and proposed a rapid method for identifying CH4, CO, and their mixtures. Most reported methods for E-nose were based on analyzing the entire response process and employing complex algorithms, such as neural network, which result in long time-consuming processes for gas detection and identification. To overcome these shortcomings, this paper firstly proposes a way to shorten the gas detection time by analyzing only the start stage of the E-nose response instead of the entire response process. Subsequently, two polynomial fitting methods for extracting gas features are designed according to the characteristics of the E-nose response curves. Finally, in order to shorten the time consumption of calculation and reduce the complexity of the identification model, linear discriminant analysis (LDA) is introduced to reduce the dimensionality of the extracted feature datasets, and an XGBoost-based gas identification model is trained using the LDA optimized feature datasets. The experimental results show that the proposed method can shorten the gas detection time, obtain sufficient gas features, and achieve nearly 100% identification accuracy for CH4, CO, and their mixed gases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.