Cooperative target tracking by multiple vehicles connected through inter-vehicle communication is a promising way to improve the estimation of target state. The effectiveness of cooperative tracking closely depends on the accuracy of relative localization between host and cooperative vehicles. However, the localization signal usually provided by the satellite-based navigation system is rather susceptible to dynamic driving environment, thus influencing the effectiveness of cooperative tracking. In order to implement reliable cooperative tracking, especially when the statistical characteristic of the relative localization noise is time-varying and uncertain, this paper presents a recursive Bayesian framework which jointly estimates the state of the target and the cooperative vehicle as well as the localization noise parameter. An online variational Bayesian inference algorithm is further developed to achieve efficient recursive estimate. The simulation results verify that our proposed algorithm can effectively boost the accuracy of target tracking when the localization noise dynamically changes over time.
The fusion of on-board sensors and transmitted information via inter-vehicle communication has been proved to be an effective way to increase the perception accuracy and extend the perception range of connected intelligent vehicles. The current approaches rely heavily on the accurate self-localization of both host and cooperative vehicles. However, such information is not always available or accurate enough for effective cooperative sensing. In this paper, we propose a robust cooperative multi-vehicle tracking framework suitable for the situation where the self-localization information is inaccurate. Our framework consists of three stages. First, each vehicle perceives its surrounding environment based on the on-board sensors and exchanges the local tracks through inter-vehicle communication. Then, an algorithm based on Bayes inference is developed to match the tracks from host and cooperative vehicles and simultaneously optimize the relative pose. Finally, the tracks associated with the same target are fused by fast covariance intersection based on information theory. The simulation results based on both synthesized data and a high-quality physics-based platform show that our approach successfully implements cooperative tracking without the assistance of accurate self-localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.