In this article a comparison study of the numerical methods for compressible two-phase flows is presented. Although many numerical methods have been developed in recent years to deal with the jump conditions at the fluid-fluid interfaces in compressible multiphase flows, there is a lack of a detailed comparison of these methods. With this regard, the transport five equation model, the modified ghost fluid method and the cut-cell method are investigated here as the typical methods in this field. A variety of numerical experiments are conducted to examine their performance in simulating inviscid compressible two-phase flows. Numerical experiments include Richtmyer-Meshkov instability, interaction between a shock and a rectangle SF6 bubble, Rayleigh collapse of a cylindrical gas bubble in water and shock-induced bubble collapse, involving fluids with small or large density difference. Based on the numerical results, the performance of the method is assessed by the convergence order of the method with respect to interface position, mass conservation, interface resolution and computational efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.