Metabolic reprogramming endows cancer cells with the ability to adjust metabolic pathways to support heterogeneously biological processes. However, it is not known how the reprogrammed activities are implemented during differentiation of cancer stem cells (CSCs). In this study, we demonstrated that liver CSCs relied on the enhanced mitochondrial function to maintain stemness properties, which is different from aerobic glycolysis playing main roles in the differentiated non-CSCs. We found that liver CSCs exhibit increased mitochondrial respiratory capacity and that complex-I of mitochondria was necessary for stemness properties of liver CSCs through regulation of mitochondrial respiration. Bioinformatics analysis reveals that mitochondrial ribosomal protein S5 (MRPS5) is closely related with the function of complex-I. Further experiments confirmed that MRPS5 promoted the production of nicotinamide adenine dinucleotide (NAD + ), which is necessary for enhanced mitochondrial function in liver CSCs. MRPS5 played a critical role for liver CSCs to maintain stemness properties and to participate in tumor progression. Mechanistically, the acetylation status of MRPS5 is directly regulated by NAD + dependent deacetylase sirtuin-1 (SIRT1), which is abundant in liverCSCs and decreased during differentiation. Deacetylated MRPS5 locates in mitochondria to promote the function complex-I and the generation of NAD + to enhance mitochondrial respiration. Conversely, the acetylated MRPS5 gathered in nuclei leads to increased expression of glycolytic proteins and promotion of the Warburg Effect. Therefore, liver CSCs transform mitochondrial-dependent energy supply to a Warburg phenotype by the dual function of MRPS5. Clinical analysis of SIRT1 and MRPS5 expression in tumor tissues showed the SIRT1 High /Cytoplasmic-MRPS5 High profile was associated with patients with hepatocellular carcinoma with poor prognosis. Conclusion: SIRT1/MRPS5 axis participates in metabolic reprogramming to facilitate tumor progression and may serve as a promising therapeutic target of liver cancer. (Hepatology 2019;70:1197-1213).
Background: Fatty acid oxidation (FAO) is a major alternate energy metabolism pathway in tumor cells subjected to metabolic stress caused by glucose deficiency during rapid progression. However, the mechanism of metabolic reprogramming between glycolysis and FAO in tumor cells is unknown. Therefore, identifying the metabolic glucolipid conversion hub in tumor cells is crucial. Methods: We used single-cell RNA sequencing (scRNA-Seq), RNA sequencing (RNA-Seq), The Cancer Genome Atlas (TCGA), and chromatin immunoprecipitation sequencing (ChIP-Seq) to predict the critical regulator and mechanism of metabolic glucolipid conversion in colorectal cancer (CRC) tumor cells. We used Seahorse metabolic analysis, immunoblotting, immunofluorescence, and immunohistochemical (IHC) technology to verify the prediction and mechanism of this regulator in cancer cell lines, a nude mouse xenograft model, and clinical CRC samples. Results: We demonstrated that sirtuin-1 (SIRT1) was upregulated in CRC cells in response to glucose deprivation and oxidative stress. SIRT1 was also a hub of metabolic glucolipid conversion. SIRT1 upregulation deacetylated β-catenin, translocated it from the nucleus to the cytoplasm, attenuated glycolysis, and was positively correlated with fatty acid oxidation (FAO). Clinical analysis of SIRT1 expression in tumor tissues showed the SIRT1 High profile was associated with poor prognosis in CRC patients. SIRT1 interference therapy significantly suppressed tumors in the mouse xenograft model. Conclusions: In hostile, glucose-deficient TMEs, SIRT1 is upregulated, and CRC cells transform the Warburg phenotype to FAO. SIRT1 indicates the frequency of glucolipid transformation and rapid tumor progression and is a promising therapeutic target of CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.