Abstract. Chemoradiotherapy, as a well-established paradigm to treat various cancers, still calls for novel strategies. Recently, gold nanoparticles (AuNPs) have been shown to play an important role as a radiosensitizer in cancer radiotherapy. The aim of this study was to evaluate the combination of polyethylene glycol (PEG) modified AuNPs and doxorubicin (DOX) to improve cancer chemoradiotherapy, in which the AuNPs was the radiosensitizer and the DOX was the model chemotherapeutic. A Pluronic® F127-based thermosensitive hydrogel (Au-DOX-Gel) loading AuNPs and DOX was developed by Bcold method^for intratumoral injection. The formulation was optimized at a F127 concentration of 22% for Au-DOX-Gel. The release profiles compared to a control group were assessed in vitro and in vivo. Au-DOX-Gel showed sustained release of AuNPs and DOX. The cell viability and surviving fraction of mouse melanoma (B16) and Human hepatocellular liver carcinoma (HepG2) cells were significantly inhibited by the combination treatment of DOX and AuNPs under radiation. Tumor sizes of mice were significantly decreased by Au-DOX-Gel compared to controls. Interestingly, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and Ki-67 staining results showed that tumor cell growth and proliferation were inhibited by AuNPs combined with DOX under radiation, suggesting that the radiosensitization activity and combination effects might be caused by inhibition of tumor cell growth and proliferation. Furthermore, the results of skin safety tests, histological observation of organs, and the body weight changes indicated in vivo safety of Au-DOX-Gel. In conclusion, the Au-DOX-Gel developed in this study could represent a promising strategy for improved cancer chemoradiotherapy.
HIGHLIGHTS• High-purity (~ 99%) carbon nanocoils (CNCs) without the amorphous carbon layer were synthesized by using porous α-Fe 2 O 3 /SnO 2 catalyst.• The highest yield of the CNCs can reach ~ 9098% after a 6 h growth, which is much higher than those mentioned in previous reports.• A CNC Buckypaper was successfully prepared and utilized as an efficient adsorbent for the removal of methylene blue dye with the adsorption efficiency of 90.9%.ABSTRACT High-purity (99%) carbon nanocoils (CNCs) have been synthesized by using porous α-Fe 2 O 3 /SnO 2 catalyst. The yield of CNCs reaches 9,098% after a 6 h growth. This value is much higher than the previously reported data, indicating that this method is promising to synthesize high-purity CNCs on a large scale. It is considered that an appropriate proportion of Fe and Sn, proper particle size distribution, and a loose-porous aggregate structure of the catalyst are the key points to the high-purity growth of CNCs. Benefiting from the high-purity preparation, a CNC Buckypaper was successfully prepared and the electrical, mechanical, and electrochemical properties were investigated comprehensively.Furthermore, as one of the practical applications, the CNC Buckypaper was successfully utilized as an efficient adsorbent for the removal of methylene blue dye from wastewater with an adsorption efficiency of 90.9%. This study provides a facile and economical route for preparing high-purity CNCs, which is suitable for large-quantity production. Furthermore, the fabrication of macroscopic CNC Buckypaper provides promising alternative of adsorbent or other practical applications.
Gold nanocages (GNCs) are a promising material that not only converts near infrared (NIR) light to heat for the ablation of tumors but also acts as a radiosensitizer. The combination of hyperthermia and radiotherapy has a synergistic effect that can lead to significant tumor cell necrosis. In the current study, we synthesized GNCs that offered the combined effects of hyperthermia and radiotherapy. This combination strategy resulted in increased tumor cell apoptosis and significant tumor tissue necrosis. We propose that GNCs can be used for clinical treatment and to potentially overcome resistance to radiotherapy by clearly increasing the antitumor effect.
Lung adenocarcinoma remains a threat to human health due to its high rate of recurrence and distant metastasis. However, the molecular mechanism underlying lung adenocarcinoma metastasis remains yet incompletely understood. Here, we show that upregulated expression of polypeptide N-acetylgalactosaminyltransferase6 (GALNT6) in lung adenocarcinoma is associated with lymph node metastasis and poor prognosis. In lung adenocarcinoma cells, GALNT6 over-expression promoted epithelial-mesenchymal transition (EMT), wound healing, and invasion which could be significantly reversed by GALNT6 silencing. GALNT6 silencing also mitigated the metastasis of lung adenocarcinoma and prolonged the survival of xenograft tumor-bearing mice. Furthermore, GALNT6 directly interacted with, and Oglycosylated chaperone protein GRP78, which promoted EMT by enhancing the MEK1/2/ERK1/2 signaling in lung cancer cells. Therefore, GALNT6 is emerging as novel positive regulator for the malignancy of human lung adenocarcinoma. Targeting GALNT6-GRP78-MEK1/2/ERK1/2 may thus represent a new avenue to develop therapeutics against lung cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.