Natural language provides an intuitive and effective interaction interface between human beings and robots. Currently, multiple approaches are presented to address natural language visual grounding for human-robot interaction. However, most of the existing approaches handle the ambiguity of natural language queries and achieve target objects grounding via dialogue systems, which make the interactions cumbersome and time-consuming. In contrast, we address interactive natural language grounding without auxiliary information. Specifically, we first propose a referring expression comprehension network to ground natural referring expressions. The referring expression comprehension network excavates the visual semantics via a visual semantic-aware network, and exploits the rich linguistic contexts in expressions by a language attention network. Furthermore, we combine the referring expression comprehension network with scene graph parsing to achieve unrestricted and complicated natural language grounding. Finally, we validate the performance of the referring expression comprehension network on three public datasets, and we also evaluate the effectiveness of the interactive natural language grounding architecture by conducting extensive natural language query groundings in different household scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.