Olive oil intake has been shown to induce significant levels of apoptosis in various cancer cells. These anti-cancer properties are thought to be mediated by phenolic compounds present in olive. These beneficial health effects of olive have been attributed, at least in part, to the presence of oleuropein and hydroxytyrosol. In this study, oleuropein and hydroxytyrosol, major phenolic compound of olive oil, was studied for its effects on growth in MCF-7 human breast cancer cells using assays for proliferation (MTT assay), cell viability (Guava ViaCount assay), cell apoptosis, cellcycle (flow cytometry). Oleuropein or hydroxytyrosol decreased cell viability, inhibited cell proliferation, and induced cell apoptosis in MCF-7 cells. Result of MTT assay showed that 200 mug/mL of oleuropein or 50 mug/mL of hydroxytyrosol remarkably reduced cell viability of MCF-7 cells. Oleuropein or hydroxytyrosol decrease of the number of MCF-7 cells by inhibiting the rate of cell proliferation and inducing cell apoptosis. Also hydroxytyrosol and oleuropein exhibited statistically significant block of G(1) to S phase transition manifested by the increase of cell number in G(0)/G(1) phase.
As aged population dramatically increases in these decades, efforts should be made on the intervention for curing age-associated neurologic degenerative diseases such as Alzheimer's disease (AD). Caffeoylquinic acid (CQA), an antioxidant component and its derivatives are natural functional compounds isolated from a variety of plants. In this study, we determined the neuroprotective effect of 3,5-di-O-CQA on Abeta(1-42) treated SH-SY5Y cells using MTT assay. To investigate the possible neuroprotective mechanism of 3,5-di-O-CQA, we performed proteomics analysis, real-time PCR analysis and measurement of the intracellular ATP level. In addition, we carried out the measurement of escape latency time to find the hidden platform in Morris water maze (MWM), real-time PCR using senescence-accelerated-prone mice (SAMP) 8 and senescence-accelerated-resistant mice (SAMR) 1 mice. Results showed that 3,5-di-O-CQA had neuroprotective effect on Abeta (1-42) treated cells. The mRNA expression of glycolytic enzyme (phosphoglycerate kinase-1; PGK1) and intracellular ATP level were increased in 3,5-di-O-CQA treated SH-SY5Y cells. We also found that 3,5-di-O-CQA administration induced the improvement of spatial learning and memory on SAMP8 mice, and the overexpression of PGK1 mRNA. These findings suggest that 3,5-di-O-CQA has a neuroprotective effect on neuron through the upregulation of PGK1 expression and ATP production activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.