Background Magnifying endoscopy with narrow band imaging (M-NBI) has been applied to examine early gastric cancer by observing microvascular architecture and microsurface structure of gastric mucosal lesions. However, the diagnostic efficacy of non-experts in differentiating early gastric cancer from non-cancerous lesions by M-NBI remained far from satisfactory. In this study, we developed a new system based on convolutional neural network (CNN) to analyze gastric mucosal lesions observed by M-NBI. Methods A total of 386 images of non-cancerous lesions and 1702 images of early gastric cancer were collected to train and establish a CNN model (Inception-v3). Then a total of 341 endoscopic images (171 non-cancerous lesions and 170 early gastric cancer) were selected to evaluate the diagnostic capabilities of CNN and endoscopists. Primary outcome measures included diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. Results The sensitivity, specificity, and accuracy of CNN system in the diagnosis of early gastric cancer were 91.18%, 90.64%, and 90.91%, respectively. No significant difference was spotted in the specificity and accuracy of diagnosis between CNN and experts. However, the diagnostic sensitivity of CNN was significantly higher than that of the experts. Furthermore, the diagnostic sensitivity, specificity and accuracy of CNN were significantly higher than those of the non-experts. Conclusions Our CNN system showed high accuracy, sensitivity and specificity in the diagnosis of early gastric cancer. It is anticipated that more progress will be made in optimization of the CNN diagnostic system and further development of artificial intelligence in the medical field.
Background Artificial intelligence (AI) assistance has been considered as a promising way to improve colonoscopic polyp detection, but there are limited prospective studies on real‐time use of AI systems. Methods We conducted a prospective, multicenter, randomized controlled trial of patients undergoing colonoscopy at six centers. Eligible patients were randomly assigned to conventional colonoscopy (control group) or AI‐assisted colonoscopy (AI group). AI assistance was our newly developed AI system for real‐time colonoscopic polyp detection. Primary outcome is polyp detection rate (PDR). Secondary outcomes include polyps per positive patient (PPP), polyps per colonoscopy (PPC), and non‐first polyps per colonoscopy (PPC‐Plus). Results A total of 2352 patients were included in the final analysis. Compared with the control, AI group did not show significant increment in PDR (38.8% vs. 36.2%, p = 0.183), but its PPC‐Plus was significantly higher (0.5 vs. 0.4, p < 0.05). In addition, AI group detected more diminutive polyps (76.0% vs. 68.8%, p < 0.01) and flat polyps (5.9% vs. 3.3%, p < 0.05). The effects varied somewhat between centers. In further logistic regression analysis, AI assistance independently contributed to the increment of PDR, and the impact was more pronounced for male endoscopists, shorter insertion time but longer withdrawal time, and elderly patients with larger waist circumference. Conclusion The intervention of AI plays a limited role in overall polyp detection, but increases detection of easily missed polyps; ChiCTR.org.cn number, ChiCTR1800015607.
This meta-analysis included eligible randomized controlled trials (RCTs) with the aim of determining whether probiotic supplementation can improve H. pylori eradication rates. PUBMED, EBSCO, Web of Science, and Ovid databases were searched. We included RCTs that investigated the effect of combining probiotics, with or without a placebo, with standard therapy. A total of 21 RCTs that reported standard therapy plus probiotics were included. Compared to the placebo group, the probiotics group was 1.21(OR 1.21, 95% CI: 0.86, 1.69) and 1.28 (OR 1.28, 95% CI: 0.88, 1.86) times more likely to achieve eradication of H. pylori infection in intent-to-treat (ITT) analysis and per protocol (PP) analysis, respectively. Probiotics with triple therapy plus a 14-day course of treatment did not improve the eradication of H. pylori infection (OR 1.44, 95% CI: 0.87, 2.39) compared to the placebo. Moreover, the placebo plus standard therapy did not improve eradication rates compared to standard therapy alone (P = 0.816). However, probiotics did improve the adverse effects of diarrhea and nausea. These pooled data suggest that the use of probiotics plus standard therapy does not improve the eradication rate of H. pylori infection compared to the placebo.
Background Ulcerative colitis [UC] is a common chronic inflammatory bowel disease without curative treatment. Methods We conducted gene set enrichment analysis to explore potential therapeutic agents for UC. Human colon tissue samples were collected to test H3 acetylation in UC. Both in vivo and in vitro colitis models were constructed to verify the role and mechanism of H3 acetylation modification in UC. Intestine-specific vitamin D receptor [VDR]-/- mice and VD [vitamin D]-deficient diet-fed mice were used to explore downstream molecular mechanisms accordingly. Results According to the Connectivity Map database, MS-275 [class I histone deacetylase inhibitor] was the top-ranked agent, indicating the potential importance of histone acetylation in the pathogenesis of UC. We then found that histone H3 acetylation was significantly lower in the colon epithelium of UC patients and negatively associated with disease severity. MS-275 treatment inhibited histone H3 deacetylation, subsequently attenuating nuclear factor kappa B [NF-κB]-induced inflammation, reducing cellular apoptosis, maintaining epithelial barrier function, and thereby reducing colitis activity in a mouse model of colitis. We also identified VDR as be a downstream effector of MS-275. The curative effect of MS-275 on colitis was abolished in VDR-/- mice and in VD-deficient diet-fed mice and VDR directly targeted p65. In UC patients, histone H3 acetylation, VDR and zonulin-1 expression showed similar downregulation patterns and were negatively associated with disease severity. Conclusions We demonstrate that MS-275 inhibits histone deacetylation and alleviates colitis by ameliorating inflammation, reducing apoptosis, and maintaining intestinal epithelial barrier via VDR, providing new strategies for UC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.