Background
Circular RNAs (circRNAs) are a novel type of noncoding RNAs and play important roles in tumorigenesis, including gastric cancer (GC). However, the functions of most circRNAs remain poorly understood. In our study, we aimed to investigate the functions of a new circRNA circ-DONSON in GC progression.
Methods
The expression of circ-DONSON in gastric cancer tissues and adjacent normal tissues was analyzed by bioinformatics method, qRT-PCR, Northern blotting and in situ hybridization (ISH). The effects of circ-DONSON on GC cell proliferation, apoptosis, migration and invasion were measured by using CCK8, colony formation, EdU, immunofluorescence (IF), FACS and Transwell assays. qRT-PCR and Western blotting were utilized to validate how circ-DONSON regulates SOX4 expression. ChIP, DNA fluorescence in situ hybridization (DNA-FISH) and DNA accessibility assays were used to investigate how circ-DONSON regulates SOX4 transcription. The interaction between circ-DONSON and NURF complex was evaluated by mass spectrum, RNA immunoprecipitation (RIP), pulldown and EMSA assays. Xenograft mouse model was used to analyze the effect of circ-DONSON on GC growth in vivo.
Results
Elevated expression of circ-DONSON was observed in GC tissues and positively associated with advanced TNM stage and unfavorable prognosis. Silencing of circ-DONSON significantly suppressed the proliferation, migration and invasion of GC cells while promoting apoptosis. circ-DONSON was localized in the nucleus, recruited the NURF complex to SOX4 promoter and initiated its transcription. Silencing of the NURF complex subunit SNF2L, BPTF or RBBP4 similarly attenuated GC cell growth and increased apoptosis. circ-DONSON knockdown inhibited GC growth in vivo.
Conclusion
circ-DONSON promotes GC progression through recruiting the NURF complex to initiate SOX4 expression.
Electronic supplementary material
The online version of this article (10.1186/s12943-019-1006-2) contains supplementary material, which is available to authorized users.
Lanthanide (Ln3+)‐doped luminescent nanoparticles (NPs) with emission in the second near‐infrared (NIR‐II) biological window have shown great promise but their applications are currently limited by the low absorption efficiency of Ln3+ owing to the parity‐forbidden 4f→4f electronic transition. Herein, we developed a strategy for the controlled synthesis of a new class of NIR‐II luminescent nanoprobes based on Ce3+/Er3+ and Ce3+/Nd3+ co‐doped CaS NPs, which can be effectively excited by using a low‐cost blue light‐emitting diode chip. Through sensitization by the allowed 4f→5d transition of Ce3+, intense NIR‐II luminescence from Er3+ and Nd3+ with quantum yields of 9.3 % and 7.7 % was achieved, respectively. By coating them with a layer of amphiphilic phospholipids, these NPs exhibit excellent stability in water and can be exploited as sensitive NIR‐II luminescent nanoprobes for the accurate detection of an important disease biomarker, xanthine, with a detection limit of 32.0 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.