S ubarachnoid hemorrhage (SAH) is a critical neurosurgical phenomenon that is often coupled with several interrelated complications such as acute/delayed cerebral vasospasm, brain edema, obstructive/communicating hydrocephalus, diffuse/focal cerebral ischemia or infarction, and lasting cognitive deficits. 22,25 In China, the SAH-related morbidity rate is about 1.75 per 10,000. 30Despite recent progress in microsurgical and endovascular surgical techniques, the outcome of patients who suffer an SAH remains disappointing.abbreviatioNs ARE = antioxidant-responsive element; DMF = dimethylfumarate; EBI = early brain injury; ELISA = enzyme-linked immunosorbent assay; EMSA = electrophoretic mobility shift assay; FJB = Fluoro-Jade B; GSH-Px = glutathione peroxidase; GST-α1 = glutathione S-transferase α1; HO-1 = heme oxygenase 1; IL = interleukin; Keap1 = Kelch-like ECH-associated protein 1; MDA = malondialdehyde; MWM = Morris water maze; NQO1 = quinone oxidoreductase 1; Nrf2 = nuclear factor erythroid 2-related factor 2; PBS = phosphate-buffered saline; SAH = subarachnoid hemorrhage; SOD = superoxide dismutase; TNFα = tumor necrosis factor-α. obJect Oxidative stress and the inflammatory response are thought to promote brain damage in the setting of subarachnoid hemorrhage (SAH). Previous reports have shown that dimethylfumarate (DMF) can activate the Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2-antioxidant-responsive element (Keap1-Nrf2-ARE) system in vivo and in vitro, which leads to the downregulation of oxidative stress and inflammation. The aim of this study was to evaluate the potential neuroprotective effect of DMF on SAH-induced brain injury in rats. methods Rats were subjected to SAH by the injection of 300 ml of autologous blood into the chiasmatic cistern. Rats in a DMF-treated group were given 15 mg/kg DMF twice daily by oral gavage for 2 days after the onset of SAH. Cortical apoptosis, neural necrosis, brain edema, blood-brain barrier impairment, learning deficits, and changes in the Keap1-Nrf2-ARE pathway were assessed. results Administration of DMF significantly ameliorated the early brain injury and learning deficits induced by SAH in this animal model. Treatment with DMF markedly upregulated the expressions of agents related to Keap1-Nrf2-ARE signaling after SAH. The inflammatory response and oxidative stress were downregulated by DMF therapy. coNclusioNs DMF administration resulted in abatement of the development of early brain injury and cognitive dysfunction in this prechiasmatic cistern SAH model. This result was probably mediated by the effect of DMF on the Keap1-Nrf2-ARE system.
Tert-butylhydroquinone (tBHQ), an Nrf2 activator, has demonstrated neuroprotection against brain trauma and ischemic stroke in vivo. However, little work has been done with respect to its effect on early brain injury (EBI) after subarachnoid hemorrhage (SAH). At the same time, as an oral medication, it may have extensive clinical applications for the treatment of SAH-induced cognitive dysfunction. This study was undertaken to evaluate the influence of tBHQ on EBI, secondary deficits of learning and memory, and the Keap1/Nrf2/ARE pathway in a rat SAH model. SD rats were divided into four groups: (1) Control group (n = 40); (2) SAH group (n = 40); (3) SAH+vehicle group (n = 40); and (4) SAH+tBHQ group (n = 40). All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once in 20 s. In SAH+tBHQ group, tBHQ was administered via oral gavage at a dose of 12.5 mg/kg at 2 h, 12 h, 24 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated 48 h after SAH. In the second set of experiments, changes in cognition and memory were investigated in a Morris water maze. Results shows that administration of tBHQ after SAH significantly ameliorated EBI-related problems, such as brain edema, blood-brain barrier (BBB) impairment, clinical behavior deficits, cortical apoptosis, and neurodegeneration. Learning deficits induced by SAH was markedly alleviated after tBHQ therapy. Treatment with tBHQ markedly up-regulated the expression of Keap1, Nrf2, HO-1, NQO1, and GSTα1 after SAH. In conclusion, the administration of tBHQ abated the development of EBI and cognitive dysfunction in this SAH model. Its action was probably mediated by activation of the Keap1/Nrf2/ARE pathway.
Background Luteolin, a flavonoid compound with anti-inflammatory activity, has been reported to alleviate cerebral ischemia/reperfusion (I/R) injury. However, its potential mechanism remains unclear. Methods The binding activity of luteolin to peroxisome proliferator-activated receptor gamma (PPARγ) was calculated via molecular docking analysis. Rats were subjected to middle cerebral artery occlusion and reperfusion (MCAO/R). After reperfusion, vehicle, 25 mg/kg/d luteolin, 50 mg/kg/d luteolin, 10 mg/kg/d pioglitazone, 50 mg/kg/d luteolin combined with 10 mg/kg/d T0070907 (PPARγ inhibitor) were immediately orally treatment for 7 days. ELISA, TTC staining, H&E staining, immunohistochemistry, immunofluorescence and transmission electron microscope methods were performed to evaluate the inflammation and autophagy in damaged hippocampal region. The PPARγ, light chain 3 (LC3) B-II/LC3B-I and p-nuclear factor-κB (NF-κB) p65 proteins expression levels in damaged hippocampal region were analyzed. Results Luteolin showed good PPARγ activity according to docking score (score = − 8.2). Luteolin treatment downregulated the infarct area and the pro-inflammatory cytokines levels caused by MCAO/R injury. Moreover, luteolin administration ameliorated neuroinflammation and autophagy in damaged hippocampal region. Pioglitazone plays protective roles similar to luteolin. T0070907 concealed the neuroprotective roles of 50 mg/kg/d luteolin. Conclusions Luteolin exerts neuroprotective roles against inflammation and autophagy of hippocampus induced by cerebral I/R by activating PPARγ in rats.
Aim Both MFGE8 and HMGB1 were vital players for aneurysmal subarachnoid hemorrhage. However, whether HMGB1 was served as the downstream target of MFGE8 was unknown. To test this new mechanism, we performed the SAH model in rats. Method All treatments were injected intraventricularly into the right lateral ventricles. SAH grade, brain water content, and neurological function scores were evaluated. HMGB1 expression was studied by double immunofluorescence staining. HE and Nissl’s staining were performed to observe the pathological change. Inflammatory factors were measured by ELISA method. Results High expression of MFGE8 could improve neurological function and reduce the brain edema and pro-inflammatory factors. Injection of rhMFGE8 inhibited HMGB1. To further verify the regulation of MFGE8 in HMGB1, we used rhHMGB1 and glycyrrhizin, and the results indicated MFGE8 produced excellent effect on SAH rats via inhibiting HMGB1. Conclusion In a word, MFGE8 improved EBI caused by SAH, depending on HMGB1 that was the potential mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.