As a continuation of Ice, Cloud, and Land Elevation Satellite-1 (ICESat-1), the ICESat-2/Advanced Topographic Laser Altimeter System (ATLAS) employs a micro-pulse multi-beam photon counting approach to produce photon data for measuring global terrain. Few studies have assessed the accuracy of different ATLAS channels in retrieving ground topography in forested terrain. This study aims to assess the accuracy of measuring ground topography in forested terrain using different ATLAS channels and the correlation between laser intensity parameters, laser pointing angle parameters, and elevation error. The accuracy of ground topography measured by the ATLAS footprints is evaluated by comparing the derived Digital Terrain Model (DTM) from the ATL03 (Global Geolocated Photon Data) and ATL08 (Land and Vegetation Height) products with that from the airborne Light Detection And Ranging (LiDAR). Results show that the ATLAS product performed well in the study area at all laser intensities and laser pointing angles, and correlations were found between the ATLAS DTM and airborne LiDAR DTM (coefficient of determination––R2 = 1.00, root mean squared error––RMSE = 0.75 m). Considering different laser intensities, there is a significant correlation between the tx_pulse_energy parameter and elevation error. With different laser pointing angles, there is no significant correlation between the tx_pulse_skew_est, tx_pulse_width_lower, tx_pulse_width_upper parameters and the elevation error.
The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), which is equipped with the Advanced Topographic Laser Altimeter System (ATLAS), was launched successfully in 15 September 2018. The ATLAS represents a micro-pulse photon-counting laser system, which is expected to provide more comprehensive and scientific data for carbon storage. However, the ATLAS system is sensitive to the background noise, which poses a tremendous challenge to the photon cloud noise filtering. Moreover, the Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a commonly used algorithm for noise removal from the photon cloud but there has not been an in-depth study on its parameter selection yet. This paper presents an automatic photon cloud filtering algorithm based on the Particle Swarm Optimization (PSO) algorithm, which can be used to optimize the two key parameters of the DBSCAN algorithm instead of using the manual parameter adjustment. The Particle Swarm Optimization Density Based Spatial Clustering of Applications with Noise (PSODBSCAN) algorithm was tested at different laser intensities and laser pointing types using the MATLAS dataset of the forests located in Virginia, East Coast, and the West Coast, USA. The results showed that the PSODBSCAN algorithm and the localized statistical algorithm were effective in identifying the background noise and preserving the signal photons in the raw MATLAS data. Namely, the PSODBSCAN achieved the mean F value of 0.9759, and the localized statistical algorithm achieved the mean F value of 0.6978. For both laser pointing types and laser intensities, the proposed algorithm achieved better results than the localized statistical algorithm. Therefore, the PSODBSCAN algorithm could support the MATLAS photon cloud data noise filtering applicably without manually selecting parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.