Xenocoumacin 1 (Xcn1), a major antimicrobial compound produced by Xenorhabdus nematophila CB6, has great potential to be developed into a novel biofungicide. However, its low yield in the producing cells has limited its possible commercial applications. In this study, we explored the effect of in situ product removal (ISPR), a well-established recovery technique, with the use of macroporous resin X-5 on the production of Xcn1 in a fermentation setting. Relative to the routine fermentation process, the yield of Xcn1 was improved from 42.5 to 73.8 μg/mL (1.7-fold) and 12.9 to 60.3 μg/mL (4.7-fold) in three and ten days, respectively. By agar diffusion plate and growth inhibition assays, the antibiotic activity against Bacillus subtilis and Alternaria solani was also found to be improved. Further study revealed that protection of Xcn1 against degradation and decrease in cell self-toxicity as well as upregulation of biosynthesis-related genes of Xcn1 at the transcription level contributed to yield improvement of Xcn1. In addition, resin X-5 significantly altered the metabolite profile of X. nematophila CB6, which could promote the discovery of new antibiotics.
Fusarium head blight (FHB), caused by Fusarium graminearum, whose occurrence and prevalence causes 10–70% wheat production loss, is one of the most destructive diseases influencing the production of wheat globally. To identify the potential natural products (NPs) against F. graminearum, we screened 59 Xenorhabdus strains and discovered that the cell-free supernatant (CFS) of X. budapestensis 14 (XBD14) displays the highest bioactivity. Multiple genetic methods coupled with HRMS/MS analysis determined the major antifungal NP to be Fcl-29, a fabclavine derivative. Fcl-29 was found to effectively control FHB of wheat in the field test and demonstrated broad-spectrum antifungal activity against important pathogenic fungi. The production of Fcl-29 was dramatically improved by 33.82-fold with the combinatorial strategy of genetic engineering (1.66-fold) and fermentation engineering (20.39-fold). The exploration of a new biofungicide in global plant protection is now possible.
Deoxynivalenol (DON), produced by Fusarium species, is one of the most common trichothecenes detected in cereals pre- and post-harvest, which poses a great threat to the health of livestock and human beings due to its strong toxicity. In this study, we isolated and characterized two DON-degrading bacterial strains, Bacillus sp. HN117 and Bacillus sp. N22. Both strains could degrade DON efficiently in a wide range of temperatures (from 25 °C to 42 °C) and concentrations (from 10 mg/L to 500 mg/L). After optimization of the degradation conditions, 29.0% DON was eliminated by HN117 in 72 h when it was incubated with 1000 mg/L DON; meanwhile, the DON degradation rate of N22 was boosted notably from 7.41% to 21.21% within 120 h at 500 mg/L DON. Degradation products analysis indicated HN117 was able to transform DON into a new isomer M-DOM, the possible structure of which was deduced based on LC-MS and NMR analysis, and N22 could convert DON into potential low-toxic derivatives norDON E and 9-hydroxymethyl DON lactone. These two strains have the potential to be developed as new biodegrading agents to control DON contamination in food and feed industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.