Summary
A thermal management system with the capability of achieving excellent heat dissipation is essential to the development of battery pack for transportation devices. To meet the temperature uniformity requirements of the battery pack, the plate flat heat pipe and liquid‐cooled coupled multistage heat dissipation system had been introduced. In this article, the research status of thermal management systems in battery pack was introduced. And the heat generation and heating power of the Li‐ion cell were studied. Then, the structure model of plate flat heat pipe system was proposed. Finally, the enhanced heat conduction effect of the thermal management system proposed in this article was comprehensively analyzed. Through the analysis of the results, in high discharge rates, the thermal management system proposed in this article could meet the temperature uniformity requirements of battery pack; also, the internal difference would reduce by 30.20%.
Summary
Battery, as the main energy storage element, directly affects the performance of electric vehicle. Battery thermal management research is required as the battery performance influenced by temperature obviously. This article selects liquid cold plate with different heat transfer enhanced fins as the research object. The angle and length of fins are chosen as the variables. Computational fluid dynamics (CFD) methods and experiments are used in this research. The fin angle of 15°, 30°, and 45° and fin length of 8, 10, 12 mm are selected to compose enhanced fins. The results indicate that heat transfer fins inside liquid cold plate can significantly decrease the highest temperature of battery module and temperature difference among cells. Otherwise, different fin angle and fin length can achieve different heat dissipation performance, which is not positive correlation. Then the design reference of heat transfer enhanced fin in liquid cold plate is offered.
Summary
Due to the requirement of the battery for the thermal management system, based on the coupling relationship between the velocity field and the thermal flow field of the field synergy principle, the flow paths of the forced air cooling system for different battery packs were analyzed. First, the thermodynamic parameters of the battery were collected through experiments and verified by simulation. Secondly, based on the collected thermodynamic parameters of the battery, the heat generation model of the battery, the heat conduction model of the gas, and the coupled heat dissipation model of the battery and air were established. Determine the boundary conditions, calculation methods and evaluation indicators required for simulation; Finally, based on four different driving conditions, the forced air cooling performance of the double “U” shape duct and double “1” type duct is simulated. Through the analysis of the results, the dual “U” air ducts have a more heat dissipation effect on the battery pack than the double “1” shape duct. The results conform to the definition of the field synergy principle for the coupling relationship between the velocity field and the heat flow field. Then research provide references for the design of battery packs and matching of cooling systems.
The performance of a power battery is greatly affected by temperature. This paper optimized the power battery liquid-cooled system and put forward the way of adding fins to the liquid-cooled plate to improve the cooling efficiency of the thermal management system. In this paper, a liquid-cooled battery system model was established, and the thermal balance performance of the parallel liquid-cooled system was studied through numerical analysis. The results show that the parallel liquid-cooled system with an optimized shunt could maintain the maximum temperature of the battery system below 44.31 °C, and the temperature difference of the battery system could maintain at 3 °C, which could meet the temperature requirements of the power battery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.