In this paper, a transient technique is developed to characterize the thermophysical properties of one-dimensional conductive and nonconductive microscale wires. In this technique, the to-be-measured thin wire is suspended between two electrodes. When feeding a step dc to the sample, its temperature will increase and take a certain time to reach the steady state. This temperature evolution is probed by measuring the variation of voltage over the wire, which is directly related to resistance/temperature change. The temperature evolution history of the sample can be used to determine its thermal diffusivity. A 25.4 m thick platinum wire is used as the reference sample to verify this technique. Sound agreement is obtained between the measured thermal diffusivity and the reference value. Applying this transient electrothermal technique, the thermal diffusivities of single-wall carbon nanotube bundles and polyester fibers are measured.
Nanopapers containing cellulose nanofibrils (CNFs) are an emerging and sustainable class of high performance materials. The diversification and improvement of the mechanical and functional property space critically depend on integration of CNFs with rationally designed, tailor-made polymers following bioinspired nanocomposite designs. Here we combine for the first time CNFs with colloidal dispersions of vitrimer nanoparticles (VP) into mechanically coherent nanopaper materials. Vitrimers are permanently cross-linked polymer networks that undergo temperature-induced bond shuffling through an associative mechanism and which allow welding and reshaping on the macroscale. The choice of low glass transition, hydrophobic vitrimers derived from fatty acids and polydimethylsiloxane (PDMS), and achieving dynamic reshuffling of cross-links through transesterification reactions enables excellent compatibility and covalent attachment onto the CNF surfaces. Moreover, the resulting films are ductile, stretchable and offer high water resistance. The success of imparting the vitrimeric polymeric behavior into the nanocomposite, as well as the curing mechanism of the vitrimer, is highlighted through thorough analysis of structural and mechanical properties. The dynamic exchange chemistry of the vitrimers enables efficient welding of two nanocomposite parts as characterized by good bonding strength during single lap shear tests. In the future, we expect that the dynamic character of vitrimers becomes a promising option for the design of mechanically adaptive bioinspired nanocomposites and for shaping and reshaping such materials.
Synthetic mimics of natural high-performance structural materials have shown great and partly unforeseen opportunities for the design of multifunctional materials. For nacre-mimetic nanocomposites, it has remained extraordinarily challenging to make ductile materials with high stretchability at high fractions of reinforcements, which is however of crucial importance for flexible barrier materials. Here, highly ductile and tough nacre-mimetic nanocomposites are presented, by implementing weak, but many hydrogen bonds in a ternary nacre-mimetic system consisting of two polymers (poly(vinyl amine) and poly(vinyl alcohol)) and natural nanoclay (montmorillonite) to provide efficient energy dissipation and slippage at high nanoclay content (50 wt%). Tailored interactions enable exceptional combinations of ductility (close to 50% strain) and toughness (up to 27.5 MJ m ). Extensive stress whitening, a clear sign of high internal dynamics at high internal cohesion, can be observed during mechanical deformation, and the materials can be folded like paper into origami planes without fracture. Overall, the new levels of ductility and toughness are unprecedented in highly reinforced bioinspired nanocomposites and are of critical importance to future applications, e.g., as barrier materials needed for encapsulation and as a printing substrate for flexible organic electronics.
Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m. Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH, or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.