This paper presents the application of a viscous adjoint method to the multipoint design optimization of a rotor blade through blade profiling. The adjoint method requires about twice the computational effort of the flow solution to obtain the complete gradient information at each operating condition, regardless of the number of design parameters. NASA Rotor 67 is redesigned through blade profiling. A single point design optimization is first performed to verify the effectiveness and feasibility of the optimization method. Then in order to improve the performance for a wide range of operating conditions, the blade is redesigned at three operating conditions: near peak efficiency, near stall, and near choke. Entropy production through the blade row combined with the constraints of mass flow rate and total pressure ratio is used as the objective function. The design results are presented in detail and the effects of blade profiling on performance improvement and shock/tip-leakage interaction are examined.
This paper presents the application of an adjoint method to the aerodynamic design optimization of a turbine blade. With the adjoint method, the complete gradient information needed for optimization can be obtained by solving the governing flow equations and their corresponding adjoint equations only once, regardless of the number of design parameters. The formulations including imposition of appropriate boundary conditions for the adjoint equations of the Euler equations for turbomachinery problems are presented. Two design cases are demonstrated for a turbine cascade that involves a high tip flare, characteristic of steam turbine blading in low-pressure turbines. The results demonstrate that the design optimization method is effective and the redesigned blade yields weaker shock and compression waves in the supersonic region of the flow while satisfying the specified constraint. The relative effects of changing blade profile stagger, modifying the blade profile shape, and changing both stagger and profile shape at the same time are examined and compared. Navier-Stokes calculations are performed to confirm the performance at both the design and off-design conditions of the blade designed by the Euler method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.