Adaptivity to changing environments and constraints is key to success in modern society. We address this by proposing “incrementalized versions” of Stable Marriage and Stable Roommates. That is, we try to answer the following question: for both problems, what is the computational cost of adapting an existing stable matching after some of the preferences of the agents have changed. While doing so, we also model the constraint that the new stable matching shall be not too different from the old one. After formalizing these incremental versions, we provide a fairly comprehensive picture of the computational complexity landscape of Incremental Stable Marriage and Incremental Stable Roommates. To this end, we exploit the parameters “degree of change” both in the input (difference between old and new preference profile) and in the output (difference between old and new stable matching). We obtain both hardness and tractability results, in particular showing a fixed-parameter tractability result with respect to the parameter “distance between old and new stable matching”.
We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others.
We present a mid-infrared (mid-IR) supercontinuum (SC) light source pumped by femtosecond pulses from a thulium doped fiber amplifier (TDFA) at 2 μm. An octave-spanning spectrum from 1.1 to 3.7 μm with an average power of 253 mW has been obtained from a single mode ZBLAN fiber. Spectral flatness of 10 dB over a 1390 nm range has been obtained in the mid-IR region from 1940 - 3330 nm. It is resulted from the enhanced self phase modulation process in femtosecond regime. The all-fiber configuration makes such broadband coherent source a compact candidate for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.