Small extracellular vesicles (sEVs) are natural biocarriers for biomolecule transfer between cells and promising therapeutic strategies for bone defect repair. In this study, human periodontal ligament stem cell (PDLSC)-derived sEVs (P-EVs) were immobilized in Matrigel to establish a topical cell-free transplantation strategy for bone repair. Methods: PDLSCs were cultured and P-EVs were isolated from the culture supernatant. In a rat bilateral calvarial defect model, P-EV/Matrigel was plugged into one defect and PBS/Matrigel was applied to the other. Bone repair in vivo was assessed by microcomputed tomography, histomorphometry, and immunohistochemical staining. In vitro, we investigated the effects of P-EVs on the proliferation and migration capabilities of bone marrow mesenchymal stem cells (BMMSCs) and explored the potential mechanism of action.
Results:The in vivo study showed that P-EV/Matrigel accelerated bone tissue repair by increasing cell infiltration when compared with the control. In vitro, P-EVs enhanced proliferation and migration of BMMSCs via increased phosphorylation of AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). The role of P-EV-induced adenosine receptor signaling in AKT and ERK1/2 phosphorylation was a key mediator during enhanced BMMSC migration.
Conclusion:These results are the first to demonstrate that P-EVs accelerated the repair of bone defects, partially through promoting cell proliferation and migration. P-EV/Matrigel, which combines topical EV-implantation and extracellular matrix scaffolds, provides a new cell-free strategy for bone tissue repair.
Abstractε-poly-l-lysine (ε-PL) is the main secondary metabolite of Streptomyces albulus, and it is widely used in the food industry. Polylysine synthetase (Pls) is the last enzyme in the ε-PL biosynthetic pathway. Our previous study revealed that Pls overexpressed in S. albulus CICC11022 result in the efficient production of ε-PL. In this study, a Pls gene knockout strain was initially constructed. Then, genomic, transcriptomic and metabolomic approaches were integrated to study the effects of the high expression and knockout of Pls on the gene expression and metabolite synthesis of S. albulus. The high expression of Pls resulted in 598 significantly differentially expressed genes (DEGs) and 425 known differential metabolites, whereas the inactivation of Pls resulted in 868 significant DEGs and 374 known differential metabolites. The expressions of 8 and 35 genes were negatively and positively associated with the Pls expression, respectively. Subsequently, the influence mechanism of the high expression and inactivation of Pls on the ε-PL biosynthetic pathway was elucidated. Twelve metabolites with 30% decreased yield in the high-expression strain of Pls but 30% increased production in the Pls knockout strain were identified. These results demonstrate the influence of Pls on the metabolism of S. albulus. The present work can provide the theoretical basis for improving the production capacity of ε-PL by means of metabolic engineering or developing bioactive substances derived from S. albulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.