Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and they play fundamental roles in immune regulation. Here we introduce an integrated algorithm, ImmLnc, for identifying lncRNA regulators of immune-related pathways. We comprehensively chart the landscape of lncRNA regulation in the immunome across 33 cancer types and show that cancers with similar tissue origin are likely to share lncRNA immune regulators. Moreover, the immune-related lncRNAs are likely to show expression perturbation in cancer and are significantly correlated with immune cell infiltration. ImmLnc can help prioritize cancer-related lncRNAs and further identify three molecular subtypes (proliferative, intermediate, and immunological) of non-small cell lung cancer. These subtypes are characterized by differences in mutation burden, immune cell infiltration, expression of immunomodulatory genes, response to chemotherapy, and prognosis. In summary, the ImmLnc pipeline and the resulting data serve as a valuable resource for understanding lncRNA function and to advance identification of immunotherapy targets.
The microRNAs 19a and 19b, hereafter collectively referred to as miR-19a/b, were recognised to be the most important miRNAs in the oncomiRs—miR-17-92 cluster. However, the exact roles of miR-19a/b in cancers have not been elucidated. In the present study, miR-19a/b was found to be over-expressed in gastric cancer tissues and significantly associated with the patients' metastasis of gastric cancer. Using gain or loss-of-function in in vitro and in vivo experiments, a pro-metastatic function of miR-19a/b was observed in gastric cancer. Furthermore, reporter gene assay and western blot showed that MXD1 is a direct target of miR-19a/b. Functional assays showed that not only MXD1 had an opposite effect to miR-19a/b in the regulation of gastric cancer cells, but also overexpression of MXD1 reduced both miR-19a/b and c-Myc levels, indicating a potential positive feedback loop among miR-19a/b, MXD1 and c-Myc. In conclusion, miR-17-92 cluster members miR-19a/b facilitated gastric cancer cell migration, invasion and metastasis through targeting the antagonist of c-Myc -- MXD1, implicating a novel mechanism for the malignant phenotypes of gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.