While indirectly patterned organic–inorganic hybrid perovskite nanostructures have been extensively studied for use in perovskite optoelectronic devices, it is still challenging to directly pattern perovskite thin films because perovskite is very sensitive to polar solvents and high‐temperature environments. Here, a simple and low‐cost approach is proposed to directly pattern perovskite solid‐state films into periodic nanostructures. The approach is basically perovskite recrystallization through phase transformation with the presence of a periodic mold on an as‐prepared solid‐state perovskite film. Interestingly, this study simultaneously achieves not only periodically patterned perovskite nanostructures but also better crystallized perovskites and improved optical properties, as compared to its thin film counterpart. The improved optical properties can be attributed to the light extraction and increased spontaneous emission rate of perovskite gratings. By fabricating light‐emitting diodes using the periodic perovskite nanostructure as the emission layers, approximately twofold higher radiance and lower threshold than the reference planar devices are achieved. This work opens up a new and simple way to fabricate highly crystalline and large‐area perovskite periodic nanostructures for low‐cost production of high‐performance optoelectronic devices.
A novel red-emitting Ba(2)Tb(BO(3))(2)Cl:Eu phosphor possessing a broad excitation band in the near-ultraviolet (n-UV) region was synthesized by the solid-state reaction. Versatile Ba(2)Tb(BO(3))(2)Cl compound has a rigid open framework, which can offer two types of sites for various valence's cations to occupy, and the coexistence of Eu(2+)/Eu(3+) and the red-emitting luminescence from Eu(3+) with the aid of efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) have been investigated. Ba(2)Tb(BO(3))(2)Cl emits green emission with the main peak around 543 nm, which originates from (5)D(4) → (7)F(5) transition of Tb(3+). Ba(2)Tb(BO(3))(2)Cl:Eu shows bright red emission from Eu(3+) with peaks around 594, 612, and 624 nm under n-UV excitation (350-420 nm). The existence of Eu(2+) can be testified by the broad-band excitation spectrum, UV-vis reflectance spectrum, X-ray photoelectron spectrum, and Eu L(3)-edge X-ray absorption spectrum. Decay time and time-resolved luminescence measurements indicated that the interesting luminescence behavior should be ascribed to efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) in Ba(2)Tb(BO(3))(2)Cl:Eu phosphors.
Piezoresistive microsensors are considered to be essential components of the future wearable electronic devices. However, the expensive cost, complex fabrication technology, poor stability, and low yield have limited their developments for practical applications. Here, we present a cost-effective, relatively simple, and high-yield fabrication approach to construct highly sensitive and ultrastable piezoresistive sensors using a bioinspired hierarchically structured graphite/polydimethylsiloxane composite as the active layer. In this fabrication, a commercially available sandpaper is employed as the mold to develop the hierarchical structure. Our devices exhibit fascinating performance including an ultrahigh sensitivity (64.3 kPa), fast response time (<8 ms), low limit of detection of 0.9 Pa, long-term durability (>100 000 cycles), and high ambient stability (>1 year). The applications of these devices in sensing radial artery pulses, acoustic vibrations, and human body motion are demonstrated, exhibiting their enormous potential use in real-time healthcare monitoring and robotic tactile sensing.
Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are fabricated by S.-J. Park and co-workers based on combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. These novel surfaces reduce the total internal refl ection and grant additional antifouling abilities to VLEDs. On page 161, this provides a guideline for the design of various optoelectronic devices where not only high performance but also considerably reduced contamination by the environment are required for effi cient LEDs with long operational lifespans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.